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Google Maps
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Seam Carving
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Applications

Route planning

Path planning in games

robot navigation

seam carving

automated planning

typesetting in TeX

routing protocols in networks (OSPF, BGP, RIP)

routing of telecommunication messages

traffic routing

Source (partially): Network Flows: Theory, Algorithms, and Applications,
Source (partially): R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993
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Variants

What are we interested in?

Single source: from one vertex s to all other vertices

Single sink: from all vertices to one vertex t

Source-sink: from vertex s to vertex t

All pairs: from every vertex to every vertex

Graph properties

arbitrary / non-negative / Euclidean weights

arbitrary / non-negative / no cycles
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Foundations
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Weighted Directed Graphs

Same (high-level) definition of weighted graphs as before,
but now we consider directed graphs.

Directed Graph

An (edge)-weighted graph associates every edge e
with a weight (or cost) weight(e) ∈ R.
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Reminder: A directed graphs is also called a digraph.
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API for Weighted Directed Edge

1 class DirectedEdge:

2 # Edge from n1 to n2 with weight w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Weight of the edge

6 def weight() -> float

7

8 # Initial vertex of the edge

9 def from_node() -> int

10

11 # Terminal vertex of the edge

12 def to_node() -> int
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API for Weighted Digraphs

1 class EdgeWeightedDigraph:

2 # Graph with no_nodes vertices and no edges

3 def __init__(no_nodes: int) -> None

4

5 # Add weighted edge

6 def add_edge(e: DirectedEdge) -> None

7

8 # Number of vertices

9 def no_nodes() -> int

10

11 # Number of edges

12 def no_edges() -> int

13

14 # All outgoing edges of n

15 def outgoing_edges(n: int) -> Generator[DirectedEdge]

16

17 # All edges

18 def all_edges() -> Generator[DirectedEdge]
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Shortest Path Problem

Single-source shortest path problem, SSSP

Given: Graph and start vertex s

Query for vertex v

Is there a path from s to v?
If yes, what is the shortest path?

In weighted graphs:
Shortest path is the one with lowest weight
(= minimal sum of edge costs)
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API for Shortest-path Implementation

The algorithms for shortest paths should implement the following
interface:

1 class ShortestPaths:

2 # Initialization for start vertex s

3 def __init__(graph: EdgeWeightedDigraph, s: int) -> None

4

5 # Distance from s to v; infinity, if there is no path

6 def dist_to(v: int) -> float

7

8 # Is there a path from s to v?

9 def has_path_to(v: int) -> bool

10

11 # Path from s to v; None, if there is none

12 def path_to(v: int) -> Generator[DirectedEdge]
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Shortest-path Tree

Shortest-path Tree

For a weighted digraph G and vertex s, a shortest-path tree is a
subgraph that

forms a directed tree with root s,

contains all vertices that are reachable from s, and

for which every path in the tree is a shortest path in G .
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Shortest-path Tree: Representation

Representation: arrays indexed by vertex

parent with reference to parent vertex
None for unreachable vertices and start vertex

distance with distance from the start vertex
∞ for unreachable vertices
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What about parallel edges?
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Extracting Shortest Paths

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif self.parent[node] is None:

5 yield node

6 else:

7 # output path from start to parent node

8 self.path_to(self.parent[node])

9 # finish with node

10 yield node

This implementation generates a sequence of vertices. What do we
have to change to generate a corresponding sequence of edges?
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Relaxation

Relaxing edge (u, v)

distance[u]: cost of the shortest known path to u

distance[v]: cost of the shortest known path to v

parent[v]: predecessor of v in the shortest known paths to v

Does edge (u, v) establish a shorter path to v (through u)?

If yes, update distance[v] and parent[v].

Illustration: Whiteboard
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Relaxation

1 def relax(self, edge):

2 u = edge.from_node()

3 v = edge.to_node()

4 if self.distance[v] > self.distance[u] + edge.weight():

5 self.parent[v] = u

6 self.distance[v] = self.distance[u] + edge.weight()
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Optimality Criterion and Generic
Algorithm
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Optimality Criterion

Theorem

Let G be a weighted digraph without negative cycles.
Array distance[] contains the cost of the shortest paths from s
if and only if

1 distance[s] = 0

2 distance[w ] ≤ distance[v ] + weight(e)
for all edges e = (v ,w), and

3 for all vertices v , distance[v ] is the cost of some path
from s to v , or ∞ if there is no such path.
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Optimality Criterion (Continued)

Proof

“⇒”

1 Since the graph has no cycles of negative cost, no path from s
to s can have negative cost. Thus, the empty path is optimal
and distance[s] is 0.

2 Consider an arbitrary edge e from u to v .

The shortest path from s to u has cost distance[u]. If we
extend this path by edge e, we have a path from s to v of
cost distance[u] + weight(e). Thus, the cost of a shortest
path from s to v cannot be larger and it holds that
distance[v] ≤ distance[u] + weight(e).

3 Trivially true.

. . .
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Optimality Criterion (Continued)

Proof (continued).

“⇐”
For unreachable vertices, the value is infinity by definition.

Consider an arbitrary vertex v and a shortest path p = (v0, . . . , vn)
from s to v , i.e. v0 = s, vn = v .
For i ∈ {1, . . . , n}, let ei be a cheapest edge from vi−1 to vi .
Since all inequalities are satisfied, we have

distance[vn] ≤ distance[vn−1] + weight(en)

≤ distance[vn−2] + weight(en−1) + weight(en)

≤ . . . ≤ weight(e1) + · · ·+ weight(en)

= cost of an optimal path.

Due to 3, distance[vn] cannot be lower than the optimal cost.
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Generic Algorithm

Generic Algorithm for Start Vertex s

Initialize distance[s] = 0 and
distance[v ] = ∞ for all other vertices

As long as the optimality criterion is not satisfied:
Relax an arbitrary edge

Correct:

Finite distance[v] always corresponds to the cost of a path
from s to v.

Every successful relaxation reduces distance[v] for some v.

For every vertex, the distance can only be reduced finitely
often.
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Summary
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Summary

Single-source shortest paths: Compute in a weighted digraph
the shortest paths from a given vertex to all reachable vertices.

Relaxation: If for edge (u,v) the best known distance to v is
larger than the one to u plus the edge cost, then update the
distance to v (with predecessor u).

Generic algorithm

Based on relaxation and optimality criterion.
Every instantiation is correct for all weighted digraphs
without negative-cost cycles.
Specific instantiations: next chapter.
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