Algorithms and Data Structures C5. Shortest Paths: Foundations

Gabriele Röger
University of Basel
May 22, 2024

Content of the Course

Introduction

Google Maps

Seam Carving

Applications

■ Route planning
■ Path planning in games

- robot navigation
- seam carving
- automated planning
- typesetting in TeX
- routing protocols in networks (OSPF, BGP, RIP)
- routing of telecommunication messages
- traffic routing

Source (partially): Network Flows: Theory, Algorithms, and Applications,
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

Variants

What are we interested in?
■ Single source: from one vertex s to all other vertices

- Single sink: from all vertices to one vertex t
- Source-sink: from vertex s to vertex t

■ All pairs: from every vertex to every vertex

Variants

What are we interested in?
■ Single source: from one vertex s to all other vertices
■ Single sink: from all vertices to one vertex t

- Source-sink: from vertex s to vertex t
- All pairs: from every vertex to every vertex

Graph properties

- arbitrary / non-negative / Euclidean weights

■ arbitrary / non-negative / no cycles

Foundations

Weighted Directed Graphs

Same (high-level) definition of weighted graphs as before, but now we consider directed graphs.

Directed Graph

An (edge)-weighted graph associates every edge e with a weight (or cost) weight $(e) \in \mathbb{R}$.

Reminder: A directed graphs is also called a digraph.

API for Weighted Directed Edge

```
class DirectedEdge:
    # Edge from n1 to n2 with weight w
    def __init__(n1: int, n2: int, w: float) -> None
    # Weight of the edge
    def weight() -> float
    # Initial vertex of the edge
    def from_node() -> int
    # Terminal vertex of the edge
    def to_node() -> int
```


API for Weighted Digraphs

```
class EdgeWeightedDigraph:
    # Graph with no_nodes vertices and no edges
    def __init__(no_nodes: int) -> None
    # Add weighted edge
    def add_edge(e: DirectedEdge) -> None
    # Number of vertices
    def no_nodes() -> int
    # Number of edges
    def no_edges() -> int
    # All outgoing edges of n
    def outgoing_edges(n: int) -> Generator[DirectedEdge]
    # All edges
    def all_edges() -> Generator[DirectedEdge]
```


Shortest Path Problem

Single-source shortest path problem, SSSP

- Given: Graph and start vertex s
- Query for vertex v
- Is there a path from s to v ?
- If yes, what is the shortest path?

Shortest Path Problem

Single-source shortest path problem, SSSP

- Given: Graph and start vertex s
- Query for vertex v

■ Is there a path from s to v ?

- If yes, what is the shortest path?
- In weighted graphs:

Shortest path is the one with lowest weight (= minimal sum of edge costs)

API for Shortest-path Implementation

The algorithms for shortest paths should implement the following interface:

1 class ShortestPaths:

```
    # Initialization for start vertex s
    def __init__(graph: EdgeWeightedDigraph, s: int) -> None
    # Distance from s to v; infinity, if there is no path
    def dist_to(v: int) -> float
    # Is there a path from s to v?
    def has_path_to(v: int) -> bool
    # Path from s to v; None, if there is none
    def path_to(v: int) -> Generator[DirectedEdge]
```


Shortest-path Tree

Shortest-path Tree

For a weighted digraph G and vertex s, a shortest-path tree is a subgraph that

- forms a directed tree with root s,
- contains all vertices that are reachable from s, and

■ for which every path in the tree is a shortest path in G.

Shortest-path Tree: Representation

Representation: arrays indexed by vertex

- parent with reference to parent vertex None for unreachable vertices and start vertex
■ distance with distance from the start vertex
∞ for unreachable vertices

	0	1	2	3		5	6		7
distance	4	0	4	2	1	2	3		4

Shortest-path Tree: Representation

Representation: arrays indexed by vertex

- parent with reference to parent vertex None for unreachable vertices and start vertex
■ distance with distance from the start vertex
∞ for unreachable vertices

distance | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 | 0 | 4 | 2 | 1 | 2 | 3 |

What about parallel edges?

Extracting Shortest Paths

```
def path_to(self, node):
    if self.distance[node] == float('inf'):
            yield None
    elif self.parent[node] is None:
            yield node
        else:
            # output path from start to parent node
            self.path_to(self.parent[node])
            # finish with node
            yield node
```

This implementation generates a sequence of vertices. What do we have to change to generate a corresponding sequence of edges?

Relaxation

Relaxing edge (u, v)
■ distance $[u]$: cost of the shortest known path to u
■ distance [v]: cost of the shortest known path to v

- parent [v]: predecessor of v in the shortest known paths to v
- Does edge (u, v) establish a shorter path to v (through $u)$?
- If yes, update distance [v] and parent [v].

Illustration: Whiteboard

Relaxation

```
1 def relax(self, edge):
    u = edge.from_node()
    v = edge.to_node()
    if self.distance[v] > self.distance[u] + edge.weight():
        self.parent[v] = u
        self.distance[v] = self.distance[u] + edge.weight()
```


Optimality Criterion and Generic

 Algorithm
Optimality Criterion

Theorem

Let G be a weighted digraph without negative cycles.
Array distance [] contains the cost of the shortest paths from s
if and only if
(1) distance[s] $=0$
(2) distance $[w] \leq$ distance $[v]+$ weight (e) for all edges $e=(v, w)$, and
(3) for all vertices v, distance[v] is the cost of some path from s to v, or ∞ if there is no such path.

Optimality Criterion (Continued)

Proof

$" \Rightarrow$ "
(1) Since the graph has no cycles of negative cost, no path from s to s can have negative cost. Thus, the empty path is optimal and distance[s] is 0 .

Optimality Criterion (Continued)

Proof

$" \Rightarrow$ "
(1) Since the graph has no cycles of negative cost, no path from s to s can have negative cost. Thus, the empty path is optimal and distance[s] is 0 .
(2) Consider an arbitrary edge e from u to v.

The shortest path from s to u has cost distance [u]. If we extend this path by edge e, we have a path from s to v of cost distance $[u]+$ weight (e). Thus, the cost of a shortest path from s to v cannot be larger and it holds that distance $[\mathrm{v}] \leq$ distance $[\mathrm{u}]+$ weight (e).

Optimality Criterion (Continued)

Proof

$" \Rightarrow$ "
(1) Since the graph has no cycles of negative cost, no path from s to s can have negative cost. Thus, the empty path is optimal and distance[s] is 0 .
(2) Consider an arbitrary edge e from u to v.

The shortest path from s to u has cost distance [u]. If we extend this path by edge e, we have a path from s to v of cost distance $[u]+$ weight (e). Thus, the cost of a shortest path from s to v cannot be larger and it holds that distance $[\mathrm{v}] \leq$ distance $[\mathrm{u}]+$ weight (e).
(3) Trivially true.

Optimality Criterion (Continued)

Proof (continued).

${ }^{\prime}<$
For unreachable vertices, the value is infinity by definition.
Consider an arbitrary vertex v and a shortest path $p=\left(v_{0}, \ldots, v_{n}\right)$ from s to v, i.e. $v_{0}=s, v_{n}=v$.
For $i \in\{1, \ldots, n\}$, let e_{i} be a cheapest edge from v_{i-1} to v_{i}.
Since all inequalities are satisfied, we have

$$
\begin{aligned}
\text { distance }\left[v_{n}\right] & \leq \text { distance }\left[v_{n-1}\right]+\text { weight }\left(e_{n}\right) \\
& \leq \operatorname{distance}\left[v_{n-2}\right]+\text { weight }\left(e_{n-1}\right)+\operatorname{weight}\left(e_{n}\right) \\
\leq \ldots & \leq \text { weight }\left(e_{1}\right)+\cdots+\text { weight }\left(e_{n}\right) \\
& =\text { cost of an optimal path. }
\end{aligned}
$$

Due to 3, distance $\left[v_{n}\right]$ cannot be lower than the optimal cost.

Generic Algorithm

Generic Algorithm for Start Vertex s

- Initialize distance $[s]=0$ and
distance $[v]=\infty$ for all other vertices
- As long as the optimality criterion is not satisfied: Relax an arbitrary edge

Correct:

- Finite distance[v] always corresponds to the cost of a path from s to v.
- Every successful relaxation reduces distance[v] for some v.

■ For every vertex, the distance can only be reduced finitely often.

Summary

Summary

■ Single-source shortest paths: Compute in a weighted digraph the shortest paths from a given vertex to all reachable vertices.

- Relaxation: If for edge (u, v) the best known distance to v is larger than the one to u plus the edge cost, then update the distance to v (with predecessor u).
■ Generic algorithm
- Based on relaxation and optimality criterion.
- Every instantiation is correct for all weighted digraphs without negative-cost cycles.
- Specific instantiations: next chapter.

