
Algorithms and Data Structures
C5. Shortest Paths: Foundations

Gabriele Röger

University of Basel

May 22, 2024

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 1 / 26



Algorithms and Data Structures
May 22, 2024 — C5. Shortest Paths: Foundations

C5.1 Introduction

C5.2 Foundations

C5.3 Optimality Criterion and Generic Algorithm

C5.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 2 / 26



Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

Dijkstra’s
algorithm

acyclic graphs

Bellman-Ford
algorithm

other
problems

concepts

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 3 / 26



C5. Shortest Paths: Foundations Introduction

C5.1 Introduction

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 4 / 26



C5. Shortest Paths: Foundations Introduction

Google Maps

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 5 / 26



C5. Shortest Paths: Foundations Introduction

Seam Carving

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 6 / 26



C5. Shortest Paths: Foundations Introduction

Applications

▶ Route planning

▶ Path planning in games

▶ robot navigation

▶ seam carving

▶ automated planning

▶ typesetting in TeX

▶ routing protocols in networks (OSPF, BGP, RIP)

▶ routing of telecommunication messages

▶ traffic routing

Source (partially): Network Flows: Theory, Algorithms, and Applications,
Source (partially): R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 7 / 26



C5. Shortest Paths: Foundations Introduction

Variants

What are we interested in?

▶ Single source: from one vertex s to all other vertices

▶ Single sink: from all vertices to one vertex t

▶ Source-sink: from vertex s to vertex t

▶ All pairs: from every vertex to every vertex

Graph properties

▶ arbitrary / non-negative / Euclidean weights

▶ arbitrary / non-negative / no cycles

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 8 / 26



C5. Shortest Paths: Foundations Foundations

C5.2 Foundations

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 9 / 26



C5. Shortest Paths: Foundations Foundations

Weighted Directed Graphs

Same (high-level) definition of weighted graphs as before,
but now we consider directed graphs.

Directed Graph

An (edge)-weighted graph associates every edge e
with a weight (or cost) weight(e) ∈ R.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

-1

5

2

2

1

5

Reminder: A directed graphs is also called a digraph.

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 10 / 26



C5. Shortest Paths: Foundations Foundations

API for Weighted Directed Edge

1 class DirectedEdge:

2 # Edge from n1 to n2 with weight w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Weight of the edge

6 def weight() -> float

7

8 # Initial vertex of the edge

9 def from_node() -> int

10

11 # Terminal vertex of the edge

12 def to_node() -> int

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 11 / 26



C5. Shortest Paths: Foundations Foundations

API for Weighted Digraphs

1 class EdgeWeightedDigraph:

2 # Graph with no_nodes vertices and no edges

3 def __init__(no_nodes: int) -> None

4

5 # Add weighted edge

6 def add_edge(e: DirectedEdge) -> None

7

8 # Number of vertices

9 def no_nodes() -> int

10

11 # Number of edges

12 def no_edges() -> int

13

14 # All outgoing edges of n

15 def outgoing_edges(n: int) -> Generator[DirectedEdge]

16

17 # All edges

18 def all_edges() -> Generator[DirectedEdge]

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 12 / 26



C5. Shortest Paths: Foundations Foundations

Shortest Path Problem

Single-source shortest path problem, SSSP
▶ Given: Graph and start vertex s
▶ Query for vertex v

▶ Is there a path from s to v?
▶ If yes, what is the shortest path?

▶ In weighted graphs:
Shortest path is the one with lowest weight
(= minimal sum of edge costs)

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 13 / 26



C5. Shortest Paths: Foundations Foundations

API for Shortest-path Implementation

The algorithms for shortest paths should implement the following
interface:

1 class ShortestPaths:

2 # Initialization for start vertex s

3 def __init__(graph: EdgeWeightedDigraph, s: int) -> None

4

5 # Distance from s to v; infinity, if there is no path

6 def dist_to(v: int) -> float

7

8 # Is there a path from s to v?

9 def has_path_to(v: int) -> bool

10

11 # Path from s to v; None, if there is none

12 def path_to(v: int) -> Generator[DirectedEdge]

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 14 / 26



C5. Shortest Paths: Foundations Foundations

Shortest-path Tree

Shortest-path Tree

For a weighted digraph G and vertex s, a shortest-path tree is a
subgraph that

▶ forms a directed tree with root s,

▶ contains all vertices that are reachable from s, and

▶ for which every path in the tree is a shortest path in G .

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 15 / 26



C5. Shortest Paths: Foundations Foundations

Shortest-path Tree: Representation

Representation: arrays indexed by vertex

▶ parent with reference to parent vertex
None for unreachable vertices and start vertex

▶ distance with distance from the start vertex
∞ for unreachable vertices

parent

0 1 2 3 4 5 6 7

5 None 3 6 1 1 4 6

distance

0 1 2 3 4 5 6 7

4 0 4 2 1 2 3 4

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

What about parallel edges?

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 16 / 26



C5. Shortest Paths: Foundations Foundations

Extracting Shortest Paths

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif self.parent[node] is None:

5 yield node

6 else:

7 # output path from start to parent node

8 self.path_to(self.parent[node])

9 # finish with node

10 yield node

This implementation generates a sequence of vertices. What do we
have to change to generate a corresponding sequence of edges?

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 17 / 26



C5. Shortest Paths: Foundations Foundations

Relaxation

Relaxing edge (u, v)

▶ distance[u]: cost of the shortest known path to u

▶ distance[v]: cost of the shortest known path to v

▶ parent[v]: predecessor of v in the shortest known paths to v

▶ Does edge (u, v) establish a shorter path to v (through u)?

▶ If yes, update distance[v] and parent[v].

Illustration: Whiteboard

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 18 / 26



C5. Shortest Paths: Foundations Foundations

Relaxation

1 def relax(self, edge):

2 u = edge.from_node()

3 v = edge.to_node()

4 if self.distance[v] > self.distance[u] + edge.weight():

5 self.parent[v] = u

6 self.distance[v] = self.distance[u] + edge.weight()

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 19 / 26



C5. Shortest Paths: Foundations Optimality Criterion and Generic Algorithm

C5.3 Optimality Criterion and
Generic Algorithm

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 20 / 26



C5. Shortest Paths: Foundations Optimality Criterion and Generic Algorithm

Optimality Criterion

Theorem
Let G be a weighted digraph without negative cycles.
Array distance[] contains the cost of the shortest paths from s
if and only if

1 distance[s] = 0

2 distance[w ] ≤ distance[v ] + weight(e)
for all edges e = (v ,w), and

3 for all vertices v , distance[v ] is the cost of some path
from s to v, or ∞ if there is no such path.

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 21 / 26



C5. Shortest Paths: Foundations Optimality Criterion and Generic Algorithm

Optimality Criterion (Continued)

Proof
“⇒”

1 Since the graph has no cycles of negative cost, no path from s
to s can have negative cost. Thus, the empty path is optimal
and distance[s] is 0.

2 Consider an arbitrary edge e from u to v .

The shortest path from s to u has cost distance[u]. If we
extend this path by edge e, we have a path from s to v of
cost distance[u] + weight(e). Thus, the cost of a shortest
path from s to v cannot be larger and it holds that
distance[v] ≤ distance[u] + weight(e).

3 Trivially true.

. . .

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 22 / 26



C5. Shortest Paths: Foundations Optimality Criterion and Generic Algorithm

Optimality Criterion (Continued)

Proof (continued).

“⇐”
For unreachable vertices, the value is infinity by definition.

Consider an arbitrary vertex v and a shortest path p = (v0, . . . , vn)
from s to v , i.e. v0 = s, vn = v .
For i ∈ {1, . . . , n}, let ei be a cheapest edge from vi−1 to vi .
Since all inequalities are satisfied, we have

distance[vn] ≤ distance[vn−1] + weight(en)

≤ distance[vn−2] + weight(en−1) + weight(en)

≤ . . . ≤ weight(e1) + · · ·+ weight(en)

= cost of an optimal path.

Due to 3, distance[vn] cannot be lower than the optimal cost.

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 23 / 26



C5. Shortest Paths: Foundations Optimality Criterion and Generic Algorithm

Generic Algorithm

Generic Algorithm for Start Vertex s
▶ Initialize distance[s] = 0 and

distance[v ] = ∞ for all other vertices

▶ As long as the optimality criterion is not satisfied:
Relax an arbitrary edge

Correct:

▶ Finite distance[v] always corresponds to the cost of a path
from s to v.

▶ Every successful relaxation reduces distance[v] for some v.

▶ For every vertex, the distance can only be reduced finitely
often.

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 24 / 26



C5. Shortest Paths: Foundations Summary

C5.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 25 / 26



C5. Shortest Paths: Foundations Summary

Summary

▶ Single-source shortest paths: Compute in a weighted digraph
the shortest paths from a given vertex to all reachable vertices.

▶ Relaxation: If for edge (u,v) the best known distance to v is
larger than the one to u plus the edge cost, then update the
distance to v (with predecessor u).

▶ Generic algorithm
▶ Based on relaxation and optimality criterion.
▶ Every instantiation is correct for all weighted digraphs

without negative-cost cycles.
▶ Specific instantiations: next chapter.

G. Röger (University of Basel) Algorithms and Data Structures May 22, 2024 26 / 26


	Introduction
	

	Foundations
	

	Optimality Criterion and Generic Algorithm
	

	Summary
	


