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Undirected Graphs

In chapter C4 we only consider undirected graphs.
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Trees in Undirected Graphs

Definition

A tree is an acyclic connected graph.
A forest is an acyclic graph.
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Properties of Trees
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For every tree it holds that:

Every pair of distinct vertices is connected by exactly one
simple path (simple = no vertex occurs more than once).

If we remove an edge, the graph becomes disconnected with
two connected components.

If we add an edge, we create a cycle.
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Subgraph

Definition

Graph G ′ = (V ′,E ′) is a subgraph of graph G = (V ,E )
if V ′ ⊆ V and E ′ ⊆ E .
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Spanning Tree

Definition

A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.
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How many edges does a spanning tree have?
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Weighted Graphs

Definition

An (edge-)weighted graph associates every edge e
with a weight (or cost) weight(e) ∈ R.
The weight of graph G = (V ,E ) is the sum
weight(G ) =

∑
e∈E weight(e) of its edge weights.
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Minimum Spanning Trees

Definition (Minimum Spanning Tree Problem, MST Problem)

Given: Connected weighted undirected graph
Objective: Spanning tree with minimum weight

(there is no spanning tree with a lower sum
of edge weights).
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Application: Clustering for Tumor Detection
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Application: Identity Recognition
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Application: Cell Nuclei Segmentation in Microscopy
Images
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Applications

Network design

e.g. telecommunication networks, power networks

Segmentation

e.g. of cell nuclei in microscopy images

Cluster analysis

e.g. of cell nuclei for cancer diagnosis

Approximation of hard graph problems

Steiner trees, Traveling Salesperson

Many indirect applications

LDPC error-correcting codes
Features for face recognition
Ethernet protocol for avoiding cycles in broadcasting
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Generic Algorithm
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Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if A ∪ {e} is also a subset of the edges of a MST.

Input: Connected, undirected, weighted graph G = (V ,E )

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

Find an edge e that is safe for A.
A = A ∪ {e}

3 Return (V ,A)
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Cuts in Graphs

Definition

Let G = (V ,E ) be an undirected graph.
A cut (V ′,V \ V ′) partitions the vertices.

An edge crosses the cut if one of its endpoints is in V ′

and the other endpoint in V \ V ′.
The cut respects a set of edges A ⊂ E if no e ∈ A crosses the cut.
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Sufficient Criterion for Safe Edges

Theorem

Let G = (V ,E ) be a connected, undirected, weighted graph.

Let A ⊆ E be a subset of the edges of some minimum spanning
tree for G.

Let (S ,V \S) be any cut of G that respects A and let e be an edge
crossing the cut that has minimum weight among all such edges.

Then e is safe for A.
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Sufficient Criterion for Safe Edges

Proof

Let T be a MST that includes A. If it includes e, we are done.

Otherwise we construct from T a MST T ′ that includes A ∪ {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from u to v in T .

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let e ′ = {x , z} be such an edge. Edge e ′ is
not in A because the cut respects A.

Removing e ′ from T breaks it into two connected components.
Adding e reconnects them into a new spanning tree T ′. . . .
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Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T ′ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and e ′ also crosses the cut, it holds that
weight(e) ≤ weight(e ′). Therefore weight(T ′) ≤ weight(T ).

Since T is a minimum spanning tree this implies that also T ′ is a
minimum spanning tree.

The edges of T ′ include e and all edges from A (because e ′ ̸∈ A),
so overall we have shown that e is safe for A.
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Generic Algorithm

Input: Connected, undirected, weighted graph G = (V ,E )

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

Find an edge e that is safe for A.
A = A ∪ {e}

3 Return (V ,A)

Why is there always a cut that respects A
(as required by criterion for safe edges)?

Terminates after |V | − 1 iterations. Why?

Open question: How can we efficiently determine a safe edge?

Kruskal’s algorithm
Prim’s algorithm

First: How do we represent the weighted graph?
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Graph Representation
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Representation of Weighted Edges

Can extend previous representations:

Adjacency matrix: Weight instead of binary entries

Can we support parallel edges?

Adjacency list: Pairs of successor and weight in list.

But:

Generic algorithm focuses on edges.

Idea: Represent edges as objects.
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API for Weighted Edge

1 class Edge:

2 # edge between n1 and n2 with weight w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # weight of the edge

6 def weight() -> float

7

8 # one of the two nodes

9 def either_node() -> int

10

11 # the other node (not n)

12 def other_node(int n) -> int
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Weighted Edge: Possible Implementation

1 class Edge:

2 def __init__(self, n1, n2, weight):

3 self.n1 = n1

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.n1

12

13 def other_node(self, n):

14 if self.n1 == n:

15 return self.n2

16 return self.n1
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Representation of Weighted Graphs

Graph representation

We still want to be able to quickly determine the incident
edges of a node.

Store for every node references to the incident edges.

Requires for every edge one object and two references to it.
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API for Weighted Graphs

1 class EdgeWeightedGraph:

2 # Graph with no_nodes nodes and no edges

3 def __init__(no_nodes: int) -> None

4

5 # add weighted edge

6 def add_edge(e: Edge) -> None

7

8 # number of nodes

9 def no_nodes() -> int

10

11 # number of edges

12 def no_edges() -> int

13

14 # all incident edges of node n

15 def incident_edges(n: int) -> Generator[Edge]

16

17 # all edges

18 def all_edges() -> Generator[Edge]
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Weighted Graph: Possible Implementation

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.incident= [[] for l in range(no_nodes)]

6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.incident[either].append(edge)

11 self.incident[other].append(edge)

12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges
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Weighted Graph: Possible Implementation (Continued)

19

20 def incident_edges(self, node):

21 for edge in self.incident_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.incident_edges[node]:

27 if edge.other_node(node) > node:

28 yield edge
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API for MST Implementations

The algorithms for minimum spanning trees should implement the
following interface:

1 class MST:

2 # initialization

3 def __init__(graph: EdgeWeightedGraph) -> None

4

5 # all edges of a minimum spanning tree

6 def edges() -> Generator[Edge]

7

8 # weight of the minimum spanning tree

9 def weight() -> float
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Kruskal’s Algorithm
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High-Level Perspective

Kruskal’s Algorithm

Process the edges in increasing order of their weights.

Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

Terminate after including |V | − 1 edges.

Why is this an instantiation of the generic algorithm?
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Kruskal’s Algorithm Conceptually

Conceptional Approach

Start with a forest of |V | trees,
where each tree only consists of a single node.

Every included edge connects two trees into a single one.

After |V | − 1 steps the forest consists of a single tree.

Questions

How can we detect whether an edge connects two trees or
whether both end points are in the same tree?

Do we have to fully represent the individual trees?

→ We are only interested in the connected components
→ Disjoint sets to the rescue!
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Kruskal’s Algorithm: Implementation

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

How can methods
edges() and weight()

be implemented?
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Kruskal’s Algorithm: Running Time

Assumption: Priority queue implemented as heap

Initialization of priority queue with all edges: |E | comparisons

Never more than |E | edges in the priority queue

Cost per operation is O(log2 |E |)
Total costs for priority queue operations is O(|E | log2 |E |)

Dominates costs for union find structure.

In total: Running time O(|E | log2 |E |), Memory O(|E |)
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High-Level Perspective

Prim’s Algorithm

Choose a random node as initial tree.

Let the tree grow by one additional edge in each step.

Always add an edge of minimal weight
that has exactly one end point in the tree.
→ safe edge

Stop after adding |V | − 1 edges.
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Illustration
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Implementation

Challenge:

Find the edge of minimal weight that has exactly one end point
in the tree.

Priority queue candidates that prioritizes edges by weight.

Two variants:

eager: only edges that have exactly one endpoint are in the
tree.
lazy: edges that have at least one end point in the tree
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Main Loop of Lazy Variant

Invariant

Priority queue candidate

contains all edges with exactly one endpoint in the tree

and possibly edges with both endpoints in the tree.

While there are fewer than |V | − 1 added edges:

Remove edge e with minimal weight from the priority queue.

Discard e, if both end points in the tree.

Otherwise, let v be the end point that is not yet in the tree.

Add all edges that are incident to v and whose other end point
is not in the tree to candidates.
Add e and v to the tree.
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Lazy Variant of Prim’s Algorithm

1 class LazyPrim:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5

6 # node-indexed list: True if node already in tree

7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.incident_edges(0):

13 candidates.insert(edge)
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Lazy Variant of Prim’s Algorithm (Continued)

14

15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):

17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 v, w = w, v

24 # v is in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for incident in graph.incident_edges(w):

29 if not included_nodes[incident.other_node(w)]:

30 candidates.insert(incident)
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Running Time and Memory

Bottleneck is the number of comparisons of edge weights in
methods insert and del min of the priority queue.

At most |E | edges in priority queue

Insertion and removal of minimum each take timeO(log |E |)
At most |E | insertions and |E | removals
→ Running time O(|E | log |E |)
Memory O(|E |)
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Eager Variant

Considerations

We can remove edges from the priority queue if they already
have both end points in the tree.

If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

It is sufficient to always only consider one such edge.

Idea: Remember one such edge for every node.

The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

Problem: How can we efficiently update the priority queue?
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Indexed Priority Queues

1 class IndexMinPQ:

2 # Add key with priority val

3 def insert(entry: Object, val: int) -> None

4

5 # Remove and return entry with smallest priority

6 def del_min() -> Object

7

8 # Is the priority queue empty?

9 def empty() -> bool

10

11 # Does the priority queue contain the entry?

12 def contains(entry: Object) -> bool

13

14 # Change the priority of entry to val

15 def change(entry: Object, val: int) -> None

16

17 ...
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Indexed Priority Queues

Priority queue implementation can easily be extended accordingly.

With a heap-based implementation we get running times

O(log n) for insert, change and del min

O(1) for contains and empty
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Eager Variant of Prim’s Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

edge to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

dist to: Array containing at position v the weight
of edge edge to[v].

pq: indexed priority queue of nodes

Nodes are not yet in the tree.
Can be connected by an edge with the existing tree.
Sorted by the weight of such an edge of lowest weight.
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Eager Variant of Prim’s Algorithm

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()

6 self.included_nodes = [False] * graph.no_nodes()

7

8 self.pq = IndexMinPQ()

9

10 self.dist_to[0] = 0

11 self.pq.insert(0, 0)

12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())
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Eager Prim-Algorithmus (Continued)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.incident_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_to[w]:

22 # update cheapest edge between tree and w

23 self.edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())
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Running Time and Memory

Three node-indexed arrays

At most |V | nodes in the priority queue

Memory O(|V |)
Priority queue: need |V | insertions,
|V | operations removing the minimum and
at most |E | changes of priority.
Each operation possible in time O(log |V |).
Running time O(|E | log |V |)
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Outlook
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Is there a MST Algorithm with Linear Running Time?

Algorithm Memory Running time

Kruskal |E | |E | log |E |
Lazy Prim |E | |E | log |E |
Eager Prim |V | |E | log |V |
Fredman-Tarjan |V | |E |+ |V | log |V |
Chazelle |V | |E |α(|V |) (almost |E |)
impossible? |V | |E |?

There is a randomized approach with expected linear running time
[Karger, Klein, Tarjan, 1995].


	Minimum Spanning Trees
	

	Generic Algorithm
	

	Graph Representation
	

	Kruskal's Algorithm
	

	Prim's Algorithm
	

	Outlook
	


