Algorithms and Data Structures
C4. Minimum Spanning Trees

Gabriele Roger
University of Basel

May 16, 2024

Minimum Spa Trees

ng
.OOOOOOOOOOOO

Minimum Spanning Trees

representation

Minimum Spanning Trees
0000000000000

Content of the Course

sorting
exploration
complexity
analysis applications generic
of exploration [algorithm
fundamental
data structures Kruskal's
algorithm
searching
Prim’'s
shortest O algorithm
paths
concepts other
problems

Minimum Spanning Trees
00®0000000000

Undirected Graphs

In chapter C4 we only consider undirected graphs. J

Minimum Spanning Trees
0008000000000

Trees in Undirected Graphs

Definition

A tree is an acyclic connected graph.
A forest is an acyclic graph.

Minimum Spanning Trees
0000®00000000

For every tree it holds that:

m Every pair of distinct vertices is connected by exactly one
simple path (simple = no vertex occurs more than once).

m If we remove an edge, the graph becomes disconnected with
two connected components.

m If we add an edge, we create a cycle.

Minimum Spanning Trees
0000080000000

Subgraph

Definition
Graph G’ = (V' E’) is a subgraph of graph G = (V, E)
if V/CVand E' CE.

O
© ©®
®

G/

Minimum Spanning Trees
0000008000000

Spanning Tree

Definition

A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.

Minimum Spanning Trees
0000008000000

Spanning Tree

Definition

A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.

How many edges does a spanning tree have?

Minimum Spanning Trees f;»n»—m Algorithm Graph esentation Kruskal's Algorithm Prim's

0000000 @00000

Weighted Graphs

Definition

An (edge-)weighted graph associates every edge e
with a weight (or cost) weight(e) € R.

The weight of graph G = (V, E) is the sum
weight(G) = > . weight(e) of its edge weights.

Minimum Spanning Trees Ge Algol G esentation

0O0000000e0000

Minimum Spanning Trees

Definition (Minimum Spanning Tree Problem, MST Problem)

Given: Connected weighted undirected graph
Objective: Spanning tree with minimum weight
(there is no spanning tree with a lower sum
of edge weights).

Minimum Sp.
000000000

Application: Clustering for Tumor Detection

O Analysis of soft tissue tumors by an attributed minimum spanning

tree.
Kayser K', Sandau K, Bshm G, Kunze KD, Paul

Analytical and Quantitative Cytology and Histology [01 Oct 1991, 13(5):329-334]
Abstract

Histologic slides of 22 soft tissue tumors (9 malignant fibrous histiocytoma, 8
fibrosarcoma, 2 rhabdomyosarcoma, 2 osteosarcoma, 1 Askin tumor) were Feulgen
stained. Using an automated image analyzing system (Cambridge 570) at low
magnification (25x), the tumor cell nuclei were segmented. The geometrical center of the
nuclei was considered the vertex. A basic graph was constructed according to the
neighborhood condition of O'Callaghan. Neighboring tumor cell nuclei were visualized by
connecting edges. Several features of tumor cell nuclei were measured, including area,
surface, major and minor axis of best fitting ellipsis and extinction (DNA content). Nuclear
features are attributed to the vertices. The differences, or "distances," between features of
connected vertices are attributed to the corresponding edges, which are dependent on the
attributes. Thus, different minimum spanning trees (MST) result. Each MST can be
decomposed into clusters using a suitable decomposition function on the edges, which
rejects an edge if its attributes differ from the mean of the attributed values of
surrounding edges more than a neighbor dependent bound (lower limit). Taking into
account the length and other attributes of edges (e.g., differences in orientation of the
major axis), clusters of different nuclear orientation can be detected. A cluster tree can be
constructed by defining the geometric center of a cluster as a new vertex, and by
computing the neighborhood of the cluster vertices. The result is an attributed MST
containing characteristic structural properties of the image (in cases of sarcomatous
tumors, local orientation of tumor cell nuclei and local DNA abnormalities).

Minimum Spanning
0000000000800

Application: ldentity Recognition

Neurocomputing

Volume 72, Issues 7-9, March 2009, Pages 1859-1869

ELSEVIER

Minimum spanning tree based one-class classifier
Piotr Juszczak @ & &, David M.J. Tax , Elzbieta Pe, kalska ®, Robert P.W. Duin @
B Show more

https://doi.org/10.1016/j.neucom. 2008.05.003 Get rights and content

Abstract

In the problem of one-class classification one of the classes, called the target class, has to be distinguished from all other possible objects.
These are considered as non-targets. The need for solving such a task arises in many practical applications, e.g. in machine fault detection,
face recognition, authorship verification, fraud recognition or person identification based on biometric data.

This paper proposes a new one-class classifier, the minimum spanning tree class descriptor (MST_CD). This classifier builds on the
structure of the minimum spanning tree constructed on the target training set only. The classification of test objects relies on their distances
to the closest edge of that tree, hence the proposed method is an ple of a distance-based one-class ier. Our experiments show
that the MST_CD performs especially well in case of small sample size problems and in high-dimensional spaces.

Minimum Spann
00000000000

Application: Cell Nuclei Segmentation in Microscopy
Images

Optimal cut in minimum spanning trees for 3-D cell
nuclei segmentation

7 v A. Abreu ; v F-X. Frenois ; v S. Valitutti ; v P. Brousset ; v P. Denéfle ; v B. Naegel ; v C. Wemmert View All Authors
Author(s)
Abstract Authors Figures References Citations. Keywords Metrics Media
Abstract:

In biology and pathology immunofluorescence microscopy approaches are leading techniques for deciphering of the molecular
mechanisms of cell activation and disease progression. Although several commercial softwares for image analysis are presently
in the market, available solutions do not allow a totally non subjective image analysis. There is therefore strong need for new
methods that could allow a completely non-subjective image analysis procedure including for thresholding and for choice of
the objects of interest. To address this need, we describe a fully automatic segmentation of cell nuclei in 3-D confocal
immunofluorescence images. The method merges segments of the image to fit with a nuclei model learned by a trained
random forest classifier. The merging procedure explores efficiently the fusion configurations space of an over-segmented
image by using minimum spanning trees of its region adjacency graph.

Published in: Image and Signal Processing and Analysis (ISPA), 2017 10th International Symposium on

Minimum Spanning Trees

000000000000 e

Applications

m Network design
m e.g. telecommunication networks, power networks

Segmentation
m e.g. of cell nuclei in microscopy images

Cluster analysis
m e.g. of cell nuclei for cancer diagnosis
m Approximation of hard graph problems
m Steiner trees, Traveling Salesperson
Many indirect applications

m LDPC error-correcting codes
m Features for face recognition
m Ethernet protocol for avoiding cycles in broadcasting

Generic Algorithm

®0000000

Generic Algorithm

- sorting

representation

complexity
analysis

exploration

fundamental

applications
of exploration

Generic Algorithm
0®000000

Content of the Course

data structures Kruskal's
algorithm
searching
Prim’'s

shortest algorithm

paths

— concepts other

problems

Generic Algorithm
00®00000

Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if AU {e} is also a subset of the edges of a MST. J

I an um Spanning Trees Generic Algorithm Gr: 1|Jh

0O0@00000

Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if AU {e} is also a subset of the edges of a MST. J

Input: Connected, undirected, weighted graph G = (V, E)
Q A=0
@ While (V, A) does not form a spanning tree of G:

m Find an edge e that is safe for A.
B A=AU{e}

@ Return (V, A)

Minin ning Trees Generic Algorithm Gr: esentation Krt g gorithm Prim
00000000 oc oc - 000

Cuts in Graphs

Definition

Let G = (V, E) be an undirected graph.

A cut (V',V'\ V') partitions the vertices.

An edge crosses the cut if one of its endpoints is in V/

and the other endpoint in V' \ V'.
The cut respects a set of edges A C E if no e € A crosses the cut.)

Pe g~

Minimum S 5 Trees Generic Algorithm Graj 3 entation Kr 's Algorithm Prim’s A

YO) 0O000@000

Sufficient Criterion for Safe Edges

Let G = (V, E) be a connected, undirected, weighted graph.

Let A C E be a subset of the edges of some minimum spanning
tree for G.

Let (S,V'\'S) be any cut of G that respects A and let e be an edge
crossing the cut that has minimum weight among all such edges.

Then e is safe for A.

ning Trees Generic Algorithm G esentation Krt ¥ gorithm Prim

00000800

Sufficient Criterion for Safe Edges

Let T be a MST that includes A. If it includes e, we are done.

Otherwise we construct from T a MST T’ that includes AU {e}.

Minimum S 5 Trees Generic Algorithm Graj 3 entation Kr 's Algorithm Prim’

)O() 00000800

Sufficient Criterion for Safe Edges

Let T be a MST that includes A. If it includes e, we are done.
Otherwise we construct from T a MST T’ that includes AU {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from v to vin T.

ning Trees Generic Algorithm Gr esentation Kr i gorithm Prim’

00000800 [e]e]e]e

Sufficient Criterion for Safe Edges

Let T be a MST that includes A. If it includes e, we are done.
Otherwise we construct from T a MST T’ that includes AU {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from v to vin T.

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let € = {x,z} be such an edge. Edge €’ is
not in A because the cut respects A.

S

ning Trees Generic Algorithm Gr esentation Kr i gorithm Prim’
00000000 0000 00 000

ufficient Criterion for Safe Edges

Let T be a MST that includes A. If it includes e, we are done.
Otherwise we construct from T a MST T’ that includes AU {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from v to vin T.

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let € = {x,z} be such an edge. Edge €’ is
not in A because the cut respects A.

Removing €’ from T breaks it into two connected components.
Adding e reconnects them into a new spanning tree T'.

Generic Algorithm G esentation Krt ¥ gorithm Prim

0O00000e0

Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T’ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and €’ also crosses the cut, it holds that
weight(e) < weight(e’). Therefore weight(T’) < weight(T).

ning Trees Generic Algorithm Gr esentation Krt i gorithm Prim’

0O00000e0

Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T’ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and €’ also crosses the cut, it holds that
weight(e) < weight(e’). Therefore weight(T’) < weight(T).

Since T is a minimum spanning tree this implies that also T’ is a
minimum spanning tree.

ning Trees Generic Algorithm Gr 1tation Kr g gorithm Prim’

0O00000e0 [e]e]e]e

Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T’ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and €’ also crosses the cut, it holds that
weight(e) < weight(e’). Therefore weight(T’) < weight(T).

Since T is a minimum spanning tree this implies that also T’ is a
minimum spanning tree.

The edges of T’ include e and all edges from A (because €' ¢ A),
so overall we have shown that e is safe for A. O]

V.

ing Tr—u Generic Algorithm Gr h Representation Krus

O000000e

Generic Algorlthm

Input: Connected, undirected, weighted graph G = (V, E)
Q A=0
@ While (V, A) does not form a spanning tree of G:

m Find an edge e that is safe for A.
B A=AU{e}

@ Return (V,A)

m Why is there always a cut that respects A
(as required by criterion for safe edges)?

Minimum S 5 Trees Generic Algorithm Graj 3 entation Kr 's Algorithm Prim’

YO) O000000e

Generic Algorithm

Input: Connected, undirected, weighted graph G = (V, E)
Q A=0
@ While (V, A) does not form a spanning tree of G:

m Find an edge e that is safe for A.
B A=AU{e}

@ Return (V,A)

m Why is there always a cut that respects A
(as required by criterion for safe edges)?

m Terminates after |V/| — 1 iterations. Why?

Minimum S s Trees Generic Algorithm Graph R entation Kr 's Algorithm Prim’ Outlook

YO) O000000e

Generic Algorithm

Input: Connected, undirected, weighted graph G = (V, E)
Q A=0
@ While (V, A) does not form a spanning tree of G:

m Find an edge e that is safe for A.
B A=AU{e}

@ Return (V,A)

m Why is there always a cut that respects A
(as required by criterion for safe edges)?

m Terminates after |V/| — 1 iterations. Why?
m Open question: How can we efficiently determine a safe edge?

m Kruskal's algorithm
m Prim’'s algorithm

Minimum S g Trees Generic Algorithm Graph R entation Kr 's Algorithm Prim’ Outlook

O000000e

Generic Algorithm

Input: Connected, undirected, weighted graph G = (V, E)
Q A=0
@ While (V, A) does not form a spanning tree of G:

m Find an edge e that is safe for A.
B A=AU{e}

@ Return (V,A)

m Why is there always a cut that respects A
(as required by criterion for safe edges)?

m Terminates after |V/| — 1 iterations. Why?
m Open question: How can we efficiently determine a safe edge?

m Kruskal's algorithm
m Prim’'s algorithm

m First: How do we represent the weighted graph?

Graph Representation

@00000000

Graph Representation

Graph Representation
0®0000000

Representation of Weighted Edges

Can extend previous representations:
m Adjacency matrix: Weight instead of binary entries
m Can we support parallel edges?

m Adjacency list: Pairs of successor and weight in list.

Graph Representation
0®0000000

Representation of Weighted Edges

Can extend previous representations:
m Adjacency matrix: Weight instead of binary entries
m Can we support parallel edges?

m Adjacency list: Pairs of successor and weight in list.

But:
m Generic algorithm focuses on edges.

m |dea: Represent edges as objects.

Graph Representation
00®000000

API for Weighted Edge

class Edge:
edge between nl and n2 with weight w
def __init__(nl: int, n2: int, w: float) -> None

def weight() -> float

1

2

3

4

5 # weight of the edge

6

7

8 # one of the two mnodes

9 def either_node() -> int
11 # the other node (mot n)
12 def other_node(int n) -> int

Graph Representation
000800000

Weighted Edge: Possible Implementation

1 class Edge:

2 def __init__(self, nl, n2, weight):
3 self.nl = nil

4 self.n2 = n2

5 self.edge_weight = weight
6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.nl

12

13 def other_node(self, n):

14 if self.nl == n:

15 return self.n2

16 return self.nl

A VUHH im Graph Representation i‘:.ri . gorithm Prim

0O000@0000

Representatlon of Weighted Graphs

Graph representation

m We still want to be able to quickly determine the incident
edges of a node.

m Store for every node references to the incident edges.

m Requires for every edge one object and two references to it.

Graph Representation
000000000

API for Weighted Graphs

1 class EdgeWeightedGraph:

2 # Graph with no_nodes nodes and no edges
3 def __init__(no_nodes: int) -> None

4

5 # add weighted edge

6 def add_edge(e: Edge) -> None

7

8 # number of nodes

9 def no_nodes() -> int

10

11 # number of edges

12 def no_edges() -> int

13

14 # all wncident edges of node n

15 def incident_edges(n: int) -> Generator[Edgel
16

17 # all edges

18 def all_edges() -> Generator[Edgel

Graph Representation
00000000

Weighted Graph: Possible Implementation

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self .incident= [[] for 1 in range(no_nodes)]
6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.incident [either] .append(edge)
11 self.incident [other] . append (edge)
12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges

Graph Representation
000000080

Weighted Graph: Possible Implementation (Continued)

19

20 def incident_edges(self, node):

21 for edge in self.incident_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.incident_edges[node]:
27 if edge.other_node(node) > node:

28 yield edge

Graph Representation
00000000e

API for MST Implementations

The algorithms for minimum spanning trees should implement the
following interface:

1 class MST:

2 # inttialization

3 def __init__(graph: EdgeWeightedGraph) -> None
4

5 # all edges of a minimum spanning tree

6 def edges() -> Generator [Edge]

7

8 # weight of the minimum spanning tree

9 def weight() -> float

Kruskal's Algorithm

@000000

Kruskal's Algorithm

sorting

representation

complexity
analysis

Kruskal's Algorithm
0@00000

Content of the Course

fundamental
data structures

exploration
applications generic
of exploration algorithm

searching

shortest
paths

Prim'’s
algorithm

concepts

other
problems

Algorithm Grz itation Kruskal's Algorithm Prim
O fele 00@0000 felele}

High-Level Perspective

Kruskal’s Algorithm

m Process the edges in increasing order of their weights.

® Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

m Terminate after including | V| — 1 edges.

Algorithm Grz itation Kruskal's Algorithm Prim
O fele 00@0000 felele}

High-Level Perspective

Kruskal’s Algorithm

m Process the edges in increasing order of their weights.

® Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

m Terminate after including | V| — 1 edges.

Why is this an instantiation of the generic algorithm?

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

itation Kruskal's Algorithm Prim

[e]e]e] lelele)

[llustration

red: included
discarded

esentation Kruskal’s Algorithm ~ Prim

[e]e]e] lelele)

red: included
discarded

resentation Kruskal's Algorithm ~ Prim

[e]e]e] lelele)

red: included
discarded

resentation Kruskal's Algorithm ~ Prim

[e]e]e] lelele)

red: included
discarded

Kruskal's Algorithm
[e]e]ele] lele)

Kruskal's Algorithm Conceptually

Conceptional Approach

m Start with a forest of |V/| trees,
where each tree only consists of a single node.

m Every included edge connects two trees into a single one.

m After |V| — 1 steps the forest consists of a single tree.

Algorithm G entation Kruskal's Algorithm P

Yo) 000) 0000800

Kruskal's Algorithm Conceptually

Conceptional Approach

m Start with a forest of |V/| trees,
where each tree only consists of a single node.

m Every included edge connects two trees into a single one.

m After |V| — 1 steps the forest consists of a single tree.

m How can we detect whether an edge connects two trees or
whether both end points are in the same tree?

m Do we have to fully represent the individual trees?

entation Kruskal's Algorithm P

[e]e]ele] lele)

Kruskal's Algorithm Conceptually

Conceptional Approach

m Start with a forest of |V/| trees,
where each tree only consists of a single node.

m Every included edge connects two trees into a single one.

m After |V| — 1 steps the forest consists of a single tree.

m How can we detect whether an edge connects two trees or
whether both end points are in the same tree?

m Do we have to fully represent the individual trees?

— We are only interested in the connected components
— Disjoint sets to the rescue!

Minimum ning Trees ric Algorithm Graph R tation Kruskal's Algorithm Prim

[e]e]ee]e] o)

Kruskal's Algorithm: Implementation

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue
6 for edge in graph.all_edges():

7 candidates.insert (edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):
12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf .union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

Minimum ning Trees ric Algorithm Graph R tation Kruskal's Algorithm Prim

[e]e]ee]e] o)

Kruskal's Algorithm: Implementation

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue
6 for edge in graph.all_edges():

7 candidates.insert (edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node() How can methods

14 w = edge.other_node(v) .

15 if uf.%onnected(v, w): edges() and Welght()
16 continue be implemented?

17 uf .union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

Kruskal's Algorithm
000000

Kruskal's Algorithm: Running Time

m Assumption: Priority queue implemented as heap

Kruskal's Algorithm
000000

Kruskal's Algorithm: Running Time

m Assumption: Priority queue implemented as heap

m Initialization of priority queue with all edges: |E| comparisons

Minin g Trees G Algorithm Grz itation Kruskal's Algorithm — Prim
- 00 000000@ 000

Kruskal's Algorithm: Running Time

m Assumption: Priority queue implemented as heap

m Initialization of priority queue with all edges: |E| comparisons
m Never more than |E| edges in the priority queue

Minin g Trees G Algorithm Grz itation Kruskal's Algorithm — Prim
- 00 000000@ 000

Kruskal's Algorithm: Running Time

m Assumption: Priority queue implemented as heap

m Initialization of priority queue with all edges: |E| comparisons
m Never more than |E| edges in the priority queue
m Cost per operation is O(log, |E|)

Minin ning Trees Ge Algorithm Grz esentation Kruskal's Algorithm Prim
- 00 000000@ 000

Kruskal's Algorithm: Running Time

m Assumption: Priority queue implemented as heap
m Initialization of priority queue with all edges: |E| comparisons

m Never more than |E| edges in the priority queue

m Cost per operation is O(log, |E|)
m Total costs for priority queue operations is O(|E|log, |E|)

Minin ning Trees Ge Algorithm Grz esentation Kruskal's Algorithm Prim
- 00 000000@ 000

Kruskal's Algorithm: Running Time

Assumption: Priority queue implemented as heap

Initialization of priority queue with all edges: |E| comparisons
m Never more than |E| edges in the priority queue

m Cost per operation is O(log, |E|)
m Total costs for priority queue operations is O(|E|log, |E|)

m Dominates costs for union find structure.

In total: Running time O(|E|log, |E|), Memory O(|E|)

Prim's Algorithm

0000000000000 000

Prim's Algorithm

sorting

representation

complexity
analysis

Prim's Algorithm
0000000000000 000

Content of the Course

fundamental
data structures

searching

exploration
applications generic
of exploration algorithm
Kruskal's
algorithm

shortest
paths

concepts

other
problems

G esentation Krt . gorithm Prim's Algorithm C
[e]e [e]e 0000000000000 000 OC

High-Level Perspective

Prim's Algorithm

m Choose a random node as initial tree.

m Let the tree grow by one additional edge in each step.

m Always add an edge of minimal weight
that has exactly one end point in the tree.
— safe edge

m Stop after adding |V/| — 1 edges.

esentation Krt ¥ gorithm Prim's Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

esentation Krt ¥ gorithm Prim's Algorithm

000@000000000000 OC

With start vertex 0

red: included
blue: potential next edge

esentation Krt ¥ gorithm Prim's Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

's Algorithm Prim’s Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

's Algorithm Prim’s Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

's Algorithm Prim’s Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

's Algorithm Prim’s Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

esentation Algorithm Prim's Algorithm

000@000000000000 OC

[llustration

With start vertex 0

red: included
blue: potential next edge

Prim's Algorithm
000®@000000000000

[llustration

With start vertex 0

red: included
blue: potential next edge

Prim's Algorithm
0000800000000 000

Implementation

Challenge:

Find the edge of minimal weight that has exactly one end point
in the tree.

m Priority queue candidates that prioritizes edges by weight.
m Two variants:

m eager: only edges that have exactly one endpoint are in the
tree.
m lazy: edges that have at least one end point in the tree

Prim's Algorithm
00000®0000000000

Main Loop of Lazy Variant

Priority queue candidate

m contains all edges with exactly one endpoint in the tree

m and possibly edges with both endpoints in the tree.

Gr esentation Kr 's Algorithm Prim's Algorithm Outlook

00000®0000000000

Main Loop of Lazy Variant

Priority queue candidate

m contains all edges with exactly one endpoint in the tree

m and possibly edges with both endpoints in the tree.

While there are fewer than |V/| — 1 added edges:
m Remove edge e with minimal weight from the priority queue.
m Discard e, if both end points in the tree.

m Otherwise, let v be the end point that is not yet in the tree.

m Add all edges that are incident to v and whose other end point
is not in the tree to candidates.
m Add e and v to the tree.

Prim's Algorithm
000000 @000000000

Lazy Variant of Prim's Algorithm

class LazyPrim:
def __init__(self, graph):
self.included_edges = []
self.total_weight = 0

1
2
3
4
5
6 # node-indexzed list: True if node already in tree
7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.incident_edges(0):

13 candidates.insert (edge)

Minimum Spanning Trees Algorithm Graph R atio Algorithm Prim's Algorithm

0000000@00000000

Lazy Variant of Prim’s Algorithm (Continued)

14
15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):
17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 V, W =W, V

24 # v s in tree, w 1s not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for incident in graph.incident_edges(w):

29 if not included_nodes[incident.other_node(w)]:

30 candidates.insert(incident)

esentation Krt ¥ gorithm Prim's Algorithm C

00000000 @0000000 OC

Running Time and Memory

Bottleneck is the number of comparisons of edge weights in
methods insert and del min of the priority queue.

At most |E| edges in priority queue

Insertion and removal of minimum each take timeO(log |E|)

At most |E| insertions and |E| removals
— Running time O(|E|log |E|)
Memory O(|E|)

rithm ~ Prim's Algorithm

000000000e000000 O

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

orithm — Prim’s Algorithm

000000000e000000 O

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

m If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

orithm — Prim’s Algorithm

0000000000 00000 C

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

m If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

m It is sufficient to always only consider one such edge.

orithm — Prim’s Algorithm

0000000000 00000 C

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

m If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

m It is sufficient to always only consider one such edge.

m ldea: Remember one such edge for every node.

Gr ’ entation K . gorithm Prim's Algorithm
o (¢ 000000000e000000 OO

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

m If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

m It is sufficient to always only consider one such edge.
m ldea: Remember one such edge for every node.

m The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

sentation Kruskal's Algorithm Prim's Algorithm Outlook

0000000000 00000 OO0

Eager Variant

Considerations

m We can remove edges from the priority queue if they already
have both end points in the tree.

m If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

m It is sufficient to always only consider one such edge.
m ldea: Remember one such edge for every node.

m The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

Problem: How can we efficiently update the priority queue?

Prim's Algorithm
0000000000 e00000

Indexed Priority Queues

1 class IndexMinPQ:

2 # Add key with priority val

3 def insert(entry: Object, val: int) -> None
4

5 # Remove and return entry with smallest priority
6 def del_min() -> Object

7

8 # Is the priority queue empty?

9 def empty() -> bool

10

11 # Does the priority queue contain the entry?
12 def contains(entry: Object) -> bool

13

14 # Change the priority of entry to val

15 def change(entry: Object, val: int) -> Nomne
16

17

Algorithm G sentation | ¥ gorithm Prim's Algorithm

00000000000 e0000 OC

Indexed Priority Queues

Priority queue implementation can easily be extended accordingly.

With a heap-based implementation we get running times
m O(log n) for insert, change and del_min

m O(1) for contains and empty

Minim g Trees Ge Algorithm G 3 < 's Algorithm Prim's Algorithm
) oo © 0000000000008000 C

Eager Variant of Prim’s Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

m edge_to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

Minim > Trees Ge Algorithm Gra 3 entation Kr 's Algorithm Prim's Algorithm ©
000000600000 8000 ¢

Eager Variant of Prim’s Algorithm: Data Structures

Do not use (indexed) priority queue of edges but
m edge_to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.
m dist_to: Array containing at position v the weight
of edge edge_tol[v].

Gr esentation Kr 's Algorithm Prim's Algorithm Outlook

000000000000 e000

Eager Variant of Prim's Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

m edge_to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

m dist_to: Array containing at position v the weight
of edge edge_tol[v].
® pq: indexed priority queue of nodes

m Nodes are not yet in the tree.
m Can be connected by an edge with the existing tree.
m Sorted by the weight of such an edge of lowest weight.

Prim's Algorithm
0000000000000 e00

Eager Variant of Prim's Algorithm

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()
6 self.included_nodes = [False] * graph.no_nodes()
7

8

9

self.pq = IndexMinPQ()

10 self.dist_to[0] = 0O
11 self.pq.insert (0, 0)
12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())

Prim's Algorithm
0000000000000 0e0

Eager Prim-Algorithmus (Continued)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.incident_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_tol[w]:

22 # update cheapest edge between tree and w
23 self .edge_tol[w] = edge

24 self .dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())
27 else:

28 self.pq.insert(w, edge.weight())

Prim's Algorithm
0000000000000 00e

Running Time and Memory

m Three node-indexed arrays
m At most |V| nodes in the priority queue
m Memory O(|V|)

's Algorithm ~ Prim's Algorithm

0000000000000 00e

Running Time and Memory

m Three node-indexed arrays
m At most |V| nodes in the priority queue
m Memory O(|V|)

m Priority queue: need |V/| insertions,
|V| operations removing the minimum and
at most |E| changes of priority.

esentation Krt ¥ gorithm Prim's Algorithm

0000000000000 00e OC

Running Time and Memory

m Three node-indexed arrays

m At most |V nodes in the priority queue

m Memory O(|V|)

m Priority queue: need |V/| insertions,
|V| operations removing the minimum and
at most |E| changes of priority.

m Each operation possible in time O(log |V/).

esentation Krt ¥ gorithm Prim's Algorithm

0000000000000 00e OC

Running Time and Memory

m Three node-indexed arrays

m At most |V nodes in the priority queue

m Memory O(|V|)

m Priority queue: need |V/| insertions,
|V| operations removing the minimum and
at most |E| changes of priority.

m Each operation possible in time O(log |V/).

m Running time O(|E|log |V/|)

Outlook

Is there a MST Algorithm with Linear Running Time?

Algorithm Memory Running time

Kruskal |E| |E|log |E]|

Lazy Prim |E| |E|log |E]|

Eager Prim |V |E|log|V|
Fredman-Tarjan |V]| |E| +|V]|log | V|
Chazelle 4 |E|la(]V]) (almost |E|)
impossible? |V |E|?

There is a randomized approach with expected linear running time
[Karger, Klein, Tarjan, 1995].

	Minimum Spanning Trees
	

	Generic Algorithm
	

	Graph Representation
	

	Kruskal's Algorithm
	

	Prim's Algorithm
	

	Outlook
	

