
Algorithms and Data Structures
C4. Minimum Spanning Trees

Gabriele Röger

University of Basel

May 16, 2024

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 1 / 57

Algorithms and Data Structures
May 16, 2024 — C4. Minimum Spanning Trees

C4.1 Minimum Spanning Trees

C4.2 Generic Algorithm

C4.3 Graph Representation

C4.4 Kruskal’s Algorithm

C4.5 Prim’s Algorithm

C4.6 Outlook

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 2 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

C4.1 Minimum Spanning Trees

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 3 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

generic
algorithm

Kruskal’s
algorithm

Prim’s
algorithmshortest

paths

other
problems

concepts

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 4 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Undirected Graphs

In chapter C4 we only consider undirected graphs.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 5 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Trees in Undirected Graphs

Definition
A tree is an acyclic connected graph.
A forest is an acyclic graph.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 6 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Properties of Trees

0

1

2

3

4

5

6

7

For every tree it holds that:

▶ Every pair of distinct vertices is connected by exactly one
simple path (simple = no vertex occurs more than once).

▶ If we remove an edge, the graph becomes disconnected with
two connected components.

▶ If we add an edge, we create a cycle.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 7 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Subgraph

Definition

Graph G ′ = (V ′,E ′) is a subgraph of graph G = (V ,E)
if V ′ ⊆ V and E ′ ⊆ E .

0

1

2

3

5

6

7G ′

0

1

2

3

4

5

6

7G

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 8 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Spanning Tree

Definition
A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.

0

1

2

3

4

5

6

7

How many edges does a spanning tree have?

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 9 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Weighted Graphs

Definition

An (edge-)weighted graph associates every edge e
with a weight (or cost) weight(e) ∈ R.
The weight of graph G = (V ,E) is the sum
weight(G) =

∑
e∈E weight(e) of its edge weights.

0

1

2

3

4

5

6

7

43.4

45

65.7

54.9

80
.3

86.1

52.2 59.4

73.9

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 10 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Minimum Spanning Trees

Definition (Minimum Spanning Tree Problem, MST Problem)

Given: Connected weighted undirected graph
Objective: Spanning tree with minimum weight

(there is no spanning tree with a lower sum
of edge weights).

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 11 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Application: Clustering for Tumor Detection

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 12 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Application: Identity Recognition

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 13 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Application: Cell Nuclei Segmentation in Microscopy
Images

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 14 / 57

C4. Minimum Spanning Trees Minimum Spanning Trees

Applications

▶ Network design
▶ e.g. telecommunication networks, power networks

▶ Segmentation
▶ e.g. of cell nuclei in microscopy images

▶ Cluster analysis
▶ e.g. of cell nuclei for cancer diagnosis

▶ Approximation of hard graph problems
▶ Steiner trees, Traveling Salesperson

▶ Many indirect applications
▶ LDPC error-correcting codes
▶ Features for face recognition
▶ Ethernet protocol for avoiding cycles in broadcasting

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 15 / 57

C4. Minimum Spanning Trees Generic Algorithm

C4.2 Generic Algorithm

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 16 / 57

C4. Minimum Spanning Trees Generic Algorithm

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

generic
algorithm

Kruskal’s
algorithm

Prim’s
algorithmshortest

paths

other
problems

concepts

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 17 / 57

C4. Minimum Spanning Trees Generic Algorithm

Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if A ∪ {e} is also a subset of the edges of a MST.

Input: Connected, undirected, weighted graph G = (V ,E)

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

▶ Find an edge e that is safe for A.
▶ A = A ∪ {e}

3 Return (V ,A)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 18 / 57

C4. Minimum Spanning Trees Generic Algorithm

Cuts in Graphs

Definition

Let G = (V ,E) be an undirected graph.
A cut (V ′,V \ V ′) partitions the vertices.

An edge crosses the cut if one of its endpoints is in V ′

and the other endpoint in V \ V ′.
The cut respects a set of edges A ⊂ E if no e ∈ A crosses the cut.

0

1

2

3

4

5

6

7

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 19 / 57

C4. Minimum Spanning Trees Generic Algorithm

Sufficient Criterion for Safe Edges

Theorem

Let G = (V ,E) be a connected, undirected, weighted graph.

Let A ⊆ E be a subset of the edges of some minimum spanning
tree for G.

Let (S ,V \S) be any cut of G that respects A and let e be an edge
crossing the cut that has minimum weight among all such edges.

Then e is safe for A.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 20 / 57

C4. Minimum Spanning Trees Generic Algorithm

Sufficient Criterion for Safe Edges

Proof
Let T be a MST that includes A. If it includes e, we are done.

Otherwise we construct from T a MST T ′ that includes A ∪ {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from u to v in T .

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let e ′ = {x , z} be such an edge. Edge e ′ is
not in A because the cut respects A.

Removing e ′ from T breaks it into two connected components.
Adding e reconnects them into a new spanning tree T ′. . . .

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 21 / 57

C4. Minimum Spanning Trees Generic Algorithm

Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T ′ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and e ′ also crosses the cut, it holds that
weight(e) ≤ weight(e ′). Therefore weight(T ′) ≤ weight(T).

Since T is a minimum spanning tree this implies that also T ′ is a
minimum spanning tree.

The edges of T ′ include e and all edges from A (because e ′ ̸∈ A),
so overall we have shown that e is safe for A.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 22 / 57

C4. Minimum Spanning Trees Generic Algorithm

Generic Algorithm

Input: Connected, undirected, weighted graph G = (V ,E)

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

▶ Find an edge e that is safe for A.
▶ A = A ∪ {e}

3 Return (V ,A)

▶ Why is there always a cut that respects A
(as required by criterion for safe edges)?

▶ Terminates after |V | − 1 iterations. Why?
▶ Open question: How can we efficiently determine a safe edge?

▶ Kruskal’s algorithm
▶ Prim’s algorithm

▶ First: How do we represent the weighted graph?

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 23 / 57

C4. Minimum Spanning Trees Graph Representation

C4.3 Graph Representation

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 24 / 57

C4. Minimum Spanning Trees Graph Representation

Representation of Weighted Edges

Can extend previous representations:
▶ Adjacency matrix: Weight instead of binary entries

▶ Can we support parallel edges?

▶ Adjacency list: Pairs of successor and weight in list.

But:

▶ Generic algorithm focuses on edges.

▶ Idea: Represent edges as objects.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 25 / 57

C4. Minimum Spanning Trees Graph Representation

API for Weighted Edge

1 class Edge:

2 # edge between n1 and n2 with weight w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # weight of the edge

6 def weight() -> float

7

8 # one of the two nodes

9 def either_node() -> int

10

11 # the other node (not n)

12 def other_node(int n) -> int

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 26 / 57

C4. Minimum Spanning Trees Graph Representation

Weighted Edge: Possible Implementation

1 class Edge:

2 def __init__(self, n1, n2, weight):

3 self.n1 = n1

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.n1

12

13 def other_node(self, n):

14 if self.n1 == n:

15 return self.n2

16 return self.n1

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 27 / 57

C4. Minimum Spanning Trees Graph Representation

Representation of Weighted Graphs

Graph representation

▶ We still want to be able to quickly determine the incident
edges of a node.

▶ Store for every node references to the incident edges.

▶ Requires for every edge one object and two references to it.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 28 / 57

C4. Minimum Spanning Trees Graph Representation

API for Weighted Graphs

1 class EdgeWeightedGraph:

2 # Graph with no_nodes nodes and no edges

3 def __init__(no_nodes: int) -> None

4

5 # add weighted edge

6 def add_edge(e: Edge) -> None

7

8 # number of nodes

9 def no_nodes() -> int

10

11 # number of edges

12 def no_edges() -> int

13

14 # all incident edges of node n

15 def incident_edges(n: int) -> Generator[Edge]

16

17 # all edges

18 def all_edges() -> Generator[Edge]

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 29 / 57

C4. Minimum Spanning Trees Graph Representation

Weighted Graph: Possible Implementation

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.incident= [[] for l in range(no_nodes)]

6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.incident[either].append(edge)

11 self.incident[other].append(edge)

12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 30 / 57

C4. Minimum Spanning Trees Graph Representation

Weighted Graph: Possible Implementation (Continued)

19

20 def incident_edges(self, node):

21 for edge in self.incident_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.incident_edges[node]:

27 if edge.other_node(node) > node:

28 yield edge

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 31 / 57

C4. Minimum Spanning Trees Graph Representation

API for MST Implementations

The algorithms for minimum spanning trees should implement the
following interface:

1 class MST:

2 # initialization

3 def __init__(graph: EdgeWeightedGraph) -> None

4

5 # all edges of a minimum spanning tree

6 def edges() -> Generator[Edge]

7

8 # weight of the minimum spanning tree

9 def weight() -> float

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 32 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

C4.4 Kruskal’s Algorithm

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 33 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

generic
algorithm

Kruskal’s
algorithm

Prim’s
algorithmshortest

paths

other
problems

concepts

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 34 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

High-Level Perspective

Kruskal’s Algorithm
▶ Process the edges in increasing order of their weights.

▶ Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

▶ Terminate after including |V | − 1 edges.

Why is this an instantiation of the generic algorithm?

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 35 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42
.6

54.9

48
.9

79

52.9
43.1

73.9

75
.3

red: included
gray: discarded

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 36 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

Kruskal’s Algorithm Conceptually

Conceptional Approach
▶ Start with a forest of |V | trees,

where each tree only consists of a single node.

▶ Every included edge connects two trees into a single one.

▶ After |V | − 1 steps the forest consists of a single tree.

Questions
▶ How can we detect whether an edge connects two trees or

whether both end points are in the same tree?

▶ Do we have to fully represent the individual trees?

→ We are only interested in the connected components
→ Disjoint sets to the rescue!

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 37 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

Kruskal’s Algorithm: Implementation

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

How can methods
edges() and weight()

be implemented?

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 38 / 57

C4. Minimum Spanning Trees Kruskal’s Algorithm

Kruskal’s Algorithm: Running Time

▶ Assumption: Priority queue implemented as heap

▶ Initialization of priority queue with all edges: |E | comparisons
▶ Never more than |E | edges in the priority queue

▶ Cost per operation is O(log2 |E |)
▶ Total costs for priority queue operations is O(|E | log2 |E |)

▶ Dominates costs for union find structure.

In total: Running time O(|E | log2 |E |), Memory O(|E |)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 39 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

C4.5 Prim’s Algorithm

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 40 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

generic
algorithm

Kruskal’s
algorithm

Prim’s
algorithmshortest

paths

other
problems

concepts

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 41 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

High-Level Perspective

Prim’s Algorithm
▶ Choose a random node as initial tree.

▶ Let the tree grow by one additional edge in each step.

▶ Always add an edge of minimal weight
that has exactly one end point in the tree.
→ safe edge

▶ Stop after adding |V | − 1 edges.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 42 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Illustration

With start vertex 0

0

1

2

3

4

5

6

7

43.4
45 50.3

42
.6

54.9

48
.9

79

52.9
43.1

73.9

75
.3

red: included
blue: potential next edge

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 43 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Implementation

Challenge:

Find the edge of minimal weight that has exactly one end point
in the tree.

▶ Priority queue candidates that prioritizes edges by weight.
▶ Two variants:

▶ eager: only edges that have exactly one endpoint are in the
tree.

▶ lazy: edges that have at least one end point in the tree

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 44 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Main Loop of Lazy Variant

Invariant
Priority queue candidate

▶ contains all edges with exactly one endpoint in the tree

▶ and possibly edges with both endpoints in the tree.

While there are fewer than |V | − 1 added edges:

▶ Remove edge e with minimal weight from the priority queue.

▶ Discard e, if both end points in the tree.
▶ Otherwise, let v be the end point that is not yet in the tree.

▶ Add all edges that are incident to v and whose other end point
is not in the tree to candidates.

▶ Add e and v to the tree.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 45 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Lazy Variant of Prim’s Algorithm

1 class LazyPrim:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5

6 # node-indexed list: True if node already in tree

7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.incident_edges(0):

13 candidates.insert(edge)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 46 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Lazy Variant of Prim’s Algorithm (Continued)

14

15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):

17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 v, w = w, v

24 # v is in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for incident in graph.incident_edges(w):

29 if not included_nodes[incident.other_node(w)]:

30 candidates.insert(incident)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 47 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Running Time and Memory

▶ Bottleneck is the number of comparisons of edge weights in
methods insert and del min of the priority queue.

▶ At most |E | edges in priority queue

▶ Insertion and removal of minimum each take timeO(log |E |)
▶ At most |E | insertions and |E | removals

→ Running time O(|E | log |E |)
▶ Memory O(|E |)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 48 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Eager Variant

Considerations

▶ We can remove edges from the priority queue if they already
have both end points in the tree.

▶ If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

▶ It is sufficient to always only consider one such edge.

▶ Idea: Remember one such edge for every node.

▶ The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

Problem: How can we efficiently update the priority queue?

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 49 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Indexed Priority Queues

1 class IndexMinPQ:

2 # Add key with priority val

3 def insert(entry: Object, val: int) -> None

4

5 # Remove and return entry with smallest priority

6 def del_min() -> Object

7

8 # Is the priority queue empty?

9 def empty() -> bool

10

11 # Does the priority queue contain the entry?

12 def contains(entry: Object) -> bool

13

14 # Change the priority of entry to val

15 def change(entry: Object, val: int) -> None

16

17 ...

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 50 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Indexed Priority Queues

Priority queue implementation can easily be extended accordingly.

With a heap-based implementation we get running times

▶ O(log n) for insert, change and del min

▶ O(1) for contains and empty

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 51 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Eager Variant of Prim’s Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

▶ edge to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

▶ dist to: Array containing at position v the weight
of edge edge to[v].

▶ pq: indexed priority queue of nodes
▶ Nodes are not yet in the tree.
▶ Can be connected by an edge with the existing tree.
▶ Sorted by the weight of such an edge of lowest weight.

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 52 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Eager Variant of Prim’s Algorithm

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()

6 self.included_nodes = [False] * graph.no_nodes()

7

8 self.pq = IndexMinPQ()

9

10 self.dist_to[0] = 0

11 self.pq.insert(0, 0)

12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 53 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Eager Prim-Algorithmus (Continued)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.incident_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_to[w]:

22 # update cheapest edge between tree and w

23 self.edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 54 / 57

C4. Minimum Spanning Trees Prim’s Algorithm

Running Time and Memory

▶ Three node-indexed arrays

▶ At most |V | nodes in the priority queue

▶ Memory O(|V |)
▶ Priority queue: need |V | insertions,

|V | operations removing the minimum and
at most |E | changes of priority.

▶ Each operation possible in time O(log |V |).
▶ Running time O(|E | log |V |)

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 55 / 57

C4. Minimum Spanning Trees Outlook

C4.6 Outlook

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 56 / 57

C4. Minimum Spanning Trees Outlook

Is there a MST Algorithm with Linear Running Time?

Algorithm Memory Running time

Kruskal |E | |E | log |E |
Lazy Prim |E | |E | log |E |
Eager Prim |V | |E | log |V |
Fredman-Tarjan |V | |E |+ |V | log |V |
Chazelle |V | |E |α(|V |) (almost |E |)
impossible? |V | |E |?

There is a randomized approach with expected linear running time
[Karger, Klein, Tarjan, 1995].

G. Röger (University of Basel) Algorithms and Data Structures May 16, 2024 57 / 57

	Minimum Spanning Trees
	

	Generic Algorithm
	

	Graph Representation
	

	Kruskal's Algorithm
	

	Prim's Algorithm
	

	Outlook
	

