Algorithms and Data Structures
C3. Disjoint-set Data Structure/Union-Find

Gabriele Roger

University of Basel

Algorithms and Data Structures
May 8, 2024 — C3. Disjoint-set Data Structure/Union-Find

C3.1 Union-Find

(C3.2 Connected Components and Equivalence
Classes

C3.3 Summary

May 8, 2024
G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 1/26
C3. Disjoint-set Data Structure/Union-Find Union-Find
G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 3 /26

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 2 /26
C3. Disjoint-set Data Structure/Union-Find Union-Find
Questions

i

HEEE
[

i

HA
T

I s
=

11
L1

'] HH L

- Eﬂﬂ;ﬁ

1

-3 TE [ek

| |] 1]
Are the red vertices connected?

How many connected components does the graph have?

SHljshe fiElilaih
S H— 1 - mnp :
T H5 A5 1 HH
JE:J]

W:E
SiSppiag=aaist

w.
JI'V
ﬂ[?

H_I_I

117
1

EREN

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 4 /26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Connected Components as Disjoint Sets

Set of conn. components as collection of disjoint sets of objects.
» One set for all vertices of one connected component.

» Operations:
» Union: Given two objects, merge the sets that contain them
into one.
Introduce a new edge between the given vertices, connecting
their connected components.
» Find: Given an object, return a representative of the set that
contains it.
Given a vertex, return a representative vertex for its connected
component.
» Must return the same representative for all objects in the set.
P> The representative may only change if set gets merged.
> Two objects are in the same set (two vertices are connected)
if find returns the same representative for them.
» Count: Return the number of sets
Return the number of connected components.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 5 /26

C3. Disjoint-set Data Structure/Union-Find

Union-Find Data Type

Union-Find

1 class UnionFind:

2 # Initialization for n objects (with names 0, ..., n-1).
3 def __init__(m: int) -> None

4

5 # Merge the sets containing objects v and w.

6 def union(v: int, w: int) -> None

7

8 # Representative for set containing v.

9 # May change if set is merged by call of union,
10 # but not otherwise.

11 def find(v: int) -> int

12

13 # Number of sets.

14 def count() -> int

C3. Disjoint-set Data Structure/Union-Find Union-Find

(Somewhat) Naive Algorithm: Quick-Find

» For n objects: Array representative of length n.
» Entry at position i is representative of the set containing i.

» Initially, every object is (alone) in its own set, and thus its
representative.

» Update the array in every call of union.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 7 /26

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 6 /26
C3. Disjoint-set Data Structure/Union-Find Union-Find

Quick-Find Data Structure

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.components = no_nodes

4 self.representative = list(range(no_nodes))

5 ‘\\\\

6 def count(self):

7 return self.components [0111"w no,nodes—l]

8

9 def find(self, v):

10 return self.representativel[v]

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 8 /26

C3. Disjoint-set Data Structure/Union-Find Union-Find
Quick-Find Data Structure (Continued)
20 def union(self, v, w):
21 repr_v = self.find(v)
22 repr_w = self.find(w)
23 if repr_v == repr_w: # already in same component
24 return
25 # replace all occurrences of repr_v in
26 # self.representative with repr_w
27 for i in range(len(self.representative)):
28 if self.representative[i] == repr_v:
29 self .representative[i] = repr_w
30 self.components -= 1 # we merged two components
Running time?
» Cost model = number of array accesses
> one access for every call of find
> between n+ 3 and 2n + 1 accesses
for every call of union that merges two components
G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 9 /26
C3. Disjoint-set Data Structure/Union-Find Union-Find
Quick-Union Data Structure
1 class QuickUnion:
2 def __init__(self, no_nodes):
3 self .parent = list(range(no_nodes))
4 self.components = no_nodes
5
6 def find(self, v):
7 while self.parent[v] != v:
8 v = self.parent[v]
9 return v
10
11 def union(self, v, w):
12 repr_v = self.find(v)
13 repr_w = self.find(w)
14 if repr_v == repr_w: # already in same component
15 return
16 self .parent[repr_v] = repr_w
17 self.components -= 1
18
19 # count as in QuickFind
G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 11 /26

C3. Disjoint-set Data Structure/Union-Find Union-Find
Better: Quick-Union aka Disjoint-set Forest
» (implicit) tree for representing each set
P represented as array with parent nodes as entries
(root: reference to itself)
0123456 78 ©
13[5]0[3]6[5][3]6]5]
(5) (6) ©
® O @ @ @
» Root node serves as representative of the set.
G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 10 / 26
C3. Disjoint-set Data Structure/Union-Find Union-Find

First Improvement

» Problem with Quick-Union: Trees can degenerate into chains.

— find requires linear time in the size of the set.

» Idea: In union the root of the tree with lower height becomes

a child of the root of the higher tree.

G. Réger (University of Basel) Algorithms and Data Structures

May 8, 2024

12

/ 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Ranked Quick-Union Algorithm

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]
6

7 def union(self, v, w):

8 repr_v = self.find(v)

9 repr_w = self.find(w)

10 if repr_v == repr_w:

11 return

12 if self.rank[repr_w] < self.rank[repr_v]:
13 self.parent [repr_w] = repr_v

14 else:

15 self .parent [repr_v] = repr_w

16 if self.rank[repr_v] == self.rank[repr_w]:
17 self.rank[repr_w] += 1

18 self.components -= 1

19

20 # connected, count and find as in QuickUnion

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 13 /26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Second Improvement

Path Compression
» Idea: During find, reconnect all traversed nodes to the root.

» We do not update the height of the tree during path
compression.

» Value of rank can deviate from the actual height.
» That's why it is called rank and not height.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024

14 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Ranked Quick-Union Algorithm with Path Compression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]
6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count and union as im RankedQuickUnion

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 15 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Discussion

» With all improvements, we achieve almost constant amortized
cost for all operations.
» More precisely: [Tarjan 1975]

> m calls of £ind for n objects (and at most n — 1 calls of
union, merging two components)

» O(ma(m,n)) array accesses

> « is inverse of a variant of the Ackermann function

» In practise is a(m, n) < 3.

» Nevertheless: there cannot be a union-find structure that
guarantees linear running time.
(under cell-probe model, only accounting for memory access)

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024

16 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Comparison to Exploration-based Approach

» Chapter C2: Algorithm ConnectedComponents,
based on graph exploration.

> After the precomputation, queries only require constant time.

> In practise, disjoint-set forests are often faster, because for
many applications, we do not have to build up the full tree.

> If the graph has already been built up, graph exploration can
be better.

» Another advantage of union find:

» Online approach
> We can easily introduce further edges.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 17 / 26

C3. Disjoint-set Data Structure/Union-Find

C3.2 Connected Components and
Equivalence Classes

G. Réger (University of Basel)

Algorithms and Data Structures May 8, 2024 18 /

Connected Components and Equivalence Classes

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Reminder: Connected Components

Undirected graph

» Two vertices u and v are in the same connected component
if there is a path between u and v (= vertices u and v are
connected).

o—o RC
‘e‘eae

o ol o

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 19 / 26

C3. Disjoint-set Data Structure/Union-Find

Connected Components: Properties

» The connected components define a
partition of the vertices:
» Every vertex is in a connected component.
» No vertex is in more than one connected component.
» .is connected with" is an equivalence relation.
> reflexive: Every vertex is connected with itself.
» symmetric: If u is connected with v,
then v is connected with u.
> transitive: If u is connected with v, and v with w,
then u is connected with w.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 20

Connected Components and Equivalence Classes

/ 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Partition in General

Definition (Partition)
A partition of a finite set M is a set P of non-empty subsets of M,
such that

> every element of M is in some set in P:
Usep S = M, and
> that sets in P are pairwise disjoint:

SNS' =0 forS,S"e Pwith S #5.

The sets in P are called blocks.

» P = {{e1,es},{e3},{e2,e5}} is a partition of M.

» Py ={{e1,e4,65},{e3}} is not a partition of M.

> P3={{e1,e4,65},{e3},{e2, €5}} is not a partition of M.
» Py ={{ei1},{e},{e3}.{es},{es}} is a partition of M.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 21 / 26

C3. Disjoint-set Data Structure/Union-Find

Equivalence Relations in General

Definition (Equivalence Relation)

An equivalence relation over set M is a

symmetric, transitive and reflexive relation R C M x M.

We write a ~ b for (a, b) € R and say that a is equivalent to b.

> symmetric: a ~ b implies b ~ a
> transitive: a~ b and b ~ ¢ implies a ~ ¢

> reflexive: for all e € M: e ~ e

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024

Connected Components and Equivalence Classes

22 /26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Equivalence Classes

Definition (Equivalence Classes)
Let R be an equivalence relation over M.
The equivalence class of a € M is the set

[a] ={be M| a~ b}.

» The set of all equivalence classes is a partition of M.

> Vice versa:
For partition P define R = {(x,y) | 3B € P:x,y € B}
(i.e. x ~ y if and only if x and y are in the same block).
Then R is an equivalence relation.

> We can consider blocks in partitions as equivalence classes
and vice versa.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 23 / 26

C3. Disjoint-set Data Structure/Union-Find

Union-Find and Equivalences

» Given: finite set M,
sequence s of equivalences a ~ b over M

» Consider equivalences as edges in a graph with set M of
vertices.

» The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.

» no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024

Connected Components and Equivalence Classes

24 /26

C3. Disjoint-set Data Structure/Union-Find

C3.3 Summary

G. Réger (University of Basel)

Algorithms and Data Structures

May 8, 2024

Summary

25 /

C3. Disjoint-set Data Structure/Union-Find Summary

Summary

» A union-find data structure maintains a collection of disjoint
sets.
P union: merge two sets.
» find: identify the set containing an object and return its
representative.

» Good implementation: Disjoint-set forest
with improvements to keep the height of the trees low:
» Union adjoins the shorter tree to the taller tree.
» Find reconnects traversed nodes to the root
(path compression).
> Applications:

» Connected components
» Finest equivalence relation

G. Réger (University of Basel) Algorithms and Data Structures May 8, 2024 26 /

26

	Union-Find
	

	Connected Components and Equivalence Classes
	

	Summary
	

