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Reminder: Graph Exploration
» Given a vertex v, visit all vertices that are reachable from v.
> Often used as part of other graph algorithms.
» Depth-first search: go “deep” into the graph (away from v)
» Breadth-first search: first all neighbours, then neighbours of
neighbours, ...
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Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.
» Directed graph: Objects as vertices, references to objects as
edges.
» One bit per object for marker during garbage collection.
» Mark: Mark all reachable objects (set bit to 1).

» Sweep: Clear unmarked objects from memory.
Afterwards set bit for all reachable objects back to 0.
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Magic Wand in Image Editing
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C2.2 Shortest Paths
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Shortest Paths: Idea

» Breadth-first search visits the vertices with increasing
(minimal) distance from the start vertex.

> First visit of a vertex happens on shortest path.

> |dea: Use path from induced search tree.
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Jupyter Notebook

@
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Shortest Paths

Jupyter notebook: graph_exploration_applications.ipynb
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Shortest-path Problem

Single-source Shortest-paths Problem
» Given: Graph and start vertex s

> Query for vertex v

» Is there a path from s to v?
> If yes, what is the shortest path?

» Abbreviation SSSP
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Shortest Paths: Algorithm

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with
7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue. append (start_node)

10 while queue: o

1 v = queue.popleft() In principle as before
12 for s in graph.successors(v): (just as a cIass)

13 if self.predecessor([s] is None:

14 self.predecessor[s] = v

15 queue . append(s)

16
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Shortest Paths: Algorithm (Continued)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None
21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node
26 return [node]

27 pre = self.predecessor [node]

28 path = self.get_path_to(pre)

29 path.append (node)

30 return path

Running time?

Later: Shortest paths with edge weights
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Detection of Acyclic Graphs

G. Réger (University of Basel)

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains

no directed cycles.

Task: Decide whether a directed graph contains
a cycle. If yes, return a cycle.

Algorithms and Data Structures May 2, 2024
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Criterion for Acyclicity

Acyclic Graphs

Induced search tree of a
depth-first search (orange) and
possible other edges

The (reachable part of the)
graph is acyclic if and only if
there are no back edges.

Idea: Remember the vertices on the current path in a DFS.
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Cycle Detection: Algorithm
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class DirectedCycle:

def

def

__init__(self, graph):
self.predecessor = [None] * graph.no_nodes()
self.on_current_path = [False] * graph.no_nodes()
self.cycle = None
for node in range(graph.no_nodes()):
if self.has_cycle():
break
if self.predecessor[node] is None:
self .predecessor [node] = node
self.dfs(graph, node) «
Repeated depth-first

searches such that
at the end all vertices
have been visited.

has_cycle(self):
return self.cycle is not None
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Acyclic Graphs

Cycle Detection: Algorithm (Continued)

16 def dfs(self, graph, node): Skip if a cycle

17 self.on_current_path[node] = True has been detected
18 for s in graph.successors(node) : somewhere.

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Update whether

22 Found a —

23 cycle

self .predecessor[s] = node
self.extract_cycle(s)
24 if self.predecessor([s] is None:

vertex is on the
current path.

25 self .predecessor[s] = node
26 self .dfs(graph, s)

27 self.on_current_path[node] = False

G. Réger (University of Basel)
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Cycle Detection: Algorithm (Continued)

30
31
32
33
34
35
36
37
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Acyclic Graphs

When calling extract_cycle, node is on a cycle in
self.predecessor.

def extract_cycle(self, node):
self.cycle = deque()
current = node
self.cycle.appendleft (current)
while True:

if current

return

current = self.predecessor[current]
self.cycle.appendleft(current)
== node:

Algorithms and Data Structures

May 2, 2024
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Jupyter Notebook

Acyclic Graphs
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Jupyter notebook: graph_exploration_applications.ipynb
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Topological Sort

Definition

A topological sort of a directed acyclic graph G = (V,E) is a
linear ordering of all its vertices such that if G contains an edge
(u,v), then u appears before v in the ordering.

For example relevant for scheduling:
edge (u, v) expresses that job u must be completed before job v
can be started.

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 25 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort: lllustration
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Topological sort: 4, 6, 1, 3,0, 2, 5
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Topological Sort: Algorithm

Theorem
For the reachable part of a acyclic graph, the reverse DFS
postorder is a topological sort.

Algorithm:
» Sequence of depth-first searches (for still unvisited vertices)
until all vertices visited.
> Store for each DFS the reverse postorder:
P; for i-th search
» Let k be the number of searches. Then the concatenation
Py, ..., P1 is a topological sort.
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Jupyter Notebook
OA'
Jupyter notebook: graph_exploration_applications.ipynb
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C2.4 Connected Components
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Connected Components of Undirected Graphs

Undirected graph

Connected Components

> Two vertices u and v are in the same connected component

if there is a path between v and v.
Rl
(2)—() (78
(4)
(5) (9)
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Connected Components: Interface
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We want to implement the following interface:

class ConnectedComponents:
# Initialization with precomputation
def __init__(graph: UndirectedGraph) -> None

# Are vertices model and mode2 connected?
def connected(nodel: int, node2: int) -> bool

# Number of comnected components
def count() -> int

# Component number for node
# (between 0 and count()-1)
def id(node: int) -> int

Idea: Sequence of graph explorations until all vertices visited.
ID of vertex corresponds to iteration in which it was visited.
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Connected Components: Algorithm
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class ConnectedComponents:
def __init__(self, graph):

self.id = [None] * graph.no_nodes()

self.curr_id = 0

visited = [False] * graph.no_nodes()

for node in range(graph.no_nodes()):

if not visited[node]:

self.dfs(graph, node, visited)
self.curr_id += 1

def dfs(self, graph, node, visited):
if visited[node]:

return
visited[node] = True
self.id[node] = self.curr_id

for n in graph.neighbours(node):
self.dfs(graph, n, visited)

How are connected, count and id implemented?
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Jupyter Notebook
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Jupyter notebook: graph_exploration_applications.ipynb
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Connected Components of Directed Graphs

G. Réger (University of Basel)

Directed graph G

> If one ignores the arc directions, then every connected
component of the resulting undirected graph is a weakly
connected component of G.

> G is strongly connected, if there is a directed path from each
vertex to each other vertex.

» A strongly connected component of G is a maximal strongly
connected subgraph.
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Strongly Connected Components
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Strongly Connected Components

Kosaraju' algorithm

» Given directed graph G = (V, E), compute a reverse
postorder P (for all vertices) of the graph
GR = (V,{(v,u) | (u,v) € E}) (all edges reversed).

» Conduct a sequence of explorations in G, always selecting the
first still unvisited vertex in P as the next start vertex.

> All vertices that are reached by the same exploration, are in
the same strongly connected component.
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Jupyter Notebook
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Jupyter notebook: graph_exploration_applications.ipynb

Connected Components
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C2.5 Summary
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C2. Graph Exploration: Applications Summary
Summary
We have seen a number of applications of graph exploration:
» Reachability
» Shortest paths
» Cycle detection
» Topological sort
» Connected components
Some applications require a specific exploration, for other
applications we can use both, BFS and DFS.
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