Algorithms and Data Structures
C2. Graph Exploration: Applications

Gabriele Roger

University of Basel

Algorithms and Data Structures
May 2, 2024 — C2. Graph Exploration: Applications

C2.1 Reachability
C2.2 Shortest Paths

C2.3 Acyclic Graphs

C2.4 Connected Components

C2.5 Summary

May 2, 2024
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 1/ 40
Reminder: Graph Exploration
» Given a vertex v, visit all vertices that are reachable from v.
> Often used as part of other graph algorithms.
» Depth-first search: go “deep” into the graph (away from v)
» Breadth-first search: first all neighbours, then neighbours of
neighbours, ...
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 3 /40

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 2 /40
Content of the Course
{ representation ‘ # reachability ‘
{ sorting ‘
{ exploration ‘ # shortest paths ‘
complexity
| | fundamental { topological sort ‘
- data structures minimum
- spanning L connected
{ searching ‘ trees components
|| shortest
paths
{ concepts ‘ other
problems
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 4 /40

C2. Graph Exploration: Applications

Content of the Course

representation ‘

Reachability

C2. Graph Exploration: Applications Reachability
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 5/ 40
C2. Graph Exploration: Applications Reachability

Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.
» Directed graph: Objects as vertices, references to objects as
edges.
» One bit per object for marker during garbage collection.
» Mark: Mark all reachable objects (set bit to 1).

» Sweep: Clear unmarked objects from memory.
Afterwards set bit for all reachable objects back to 0.

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024

7/

40

{ sorting
exploration ‘ { shortest paths ‘
complexity
analysis ﬁ cycle detection ‘
| | fundamental { topological sort ‘
- data structures minimum
spanning connected
{ searching trees components
shortest
paths
{ concepts other
problems
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 6 / 40
C2. Graph Exploration: Applications Reachability

Magic Wand in Image Editing

G. Réger (University of Basel)

Algorithms and Data Structures

© Toolbox - Tool Options

7 Antialiasing
7 Feather edges
Select transparent areas
sample merged

: m;huld -

Select by: Value

May 2, 2024

8 / 40

C2. Graph Exploration: Applications Shortest Paths

C2.2 Shortest Paths

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 9 /40

C2. Graph Exploration: Applications

Content of the Course

Shortest Paths

representation

|

{ reachability ‘

{ sorting ‘ #
{ exploration ‘
complexity
analysis
| | fundamental
- data structures minimum
— spanning
{ searching ‘ trees
B shortest
paths
{ concepts ‘ || other
problems

G. Réger (University of Basel)

Algorithms and Data Structures

ﬂ cycle detection ‘

{ topological sort ‘

connected
components

May 2, 2024

10 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Idea

» Breadth-first search visits the vertices with increasing
(minimal) distance from the start vertex.

> First visit of a vertex happens on shortest path.

> |dea: Use path from induced search tree.

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 11 / 40

C2. Graph Exploration: Applications

Jupyter Notebook

@
_
Jupyter

o

Shortest Paths

Jupyter notebook: graph_exploration_applications.ipynb

G. Réger (University of Basel)

Algorithms and Data Structures

May 2, 2024

12 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest-path Problem

Single-source Shortest-paths Problem
» Given: Graph and start vertex s

> Query for vertex v

» Is there a path from s to v?
> If yes, what is the shortest path?

» Abbreviation SSSP

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 13 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Algorithm

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with
7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue. append (start_node)

10 while queue: o

1 v = queue.popleft() In principle as before
12 for s in graph.successors(v): (just as a cIass)

13 if self.predecessor([s] is None:

14 self.predecessor[s] = v

15 queue . append(s)

16

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Algorithm (Continued)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None
21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node
26 return [node]

27 pre = self.predecessor [node]

28 path = self.get_path_to(pre)

29 path.append (node)

30 return path

Running time?

Later: Shortest paths with edge weights

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 15 / 40

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 14 / 40
C2. Graph Exploration: Applications Acyclic Graphs
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 16 / 40

C2. Graph Exploration: Applications

Content of the Course

Acyclic Graphs

{ sorting

{ representation

{ reachability ‘

{ exploration

{ shortest paths ‘

complexity
analysis
| | fundamental
- data structures minimum
— spanning
{ searching ‘ trees
|| shortest
paths
{ concepts ‘ other
problems

G. Réger (University of Basel)

Algorithms and Data Structures

{ topological sort ‘

connected
components

May 2, 2024

17 / 40

C2. Graph Exploration: Applications

Detection of Acyclic Graphs

G. Réger (University of Basel)

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains

no directed cycles.

Task: Decide whether a directed graph contains
a cycle. If yes, return a cycle.

Algorithms and Data Structures May 2, 2024

Acyclic Graphs

18 / 40

C2. Graph Exploration: Applications

Criterion for Acyclicity

Acyclic Graphs

Induced search tree of a
depth-first search (orange) and
possible other edges

The (reachable part of the)
graph is acyclic if and only if
there are no back edges.

Idea: Remember the vertices on the current path in a DFS.

G. Réger (University of Basel)

Algorithms and Data Structures

May 2, 2024

19 / 40

C2. Graph Exploration: Applications

Cycle Detection: Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14

G. Réger (University of Basel)

class DirectedCycle:

def

def

__init__(self, graph):
self.predecessor = [None] * graph.no_nodes()
self.on_current_path = [False] * graph.no_nodes()
self.cycle = None
for node in range(graph.no_nodes()):
if self.has_cycle():
break
if self.predecessor[node] is None:
self .predecessor [node] = node
self.dfs(graph, node) «
Repeated depth-first

searches such that
at the end all vertices
have been visited.

has_cycle(self):
return self.cycle is not None

Algorithms and Data Structures May 2, 2024

Acyclic Graphs

20 / 40

C2. Graph Exploration: Applications

Acyclic Graphs

Cycle Detection: Algorithm (Continued)

16 def dfs(self, graph, node): Skip if a cycle

17 self.on_current_path[node] = True has been detected
18 for s in graph.successors(node) : somewhere.

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Update whether

22 Found a —

23 cycle

self .predecessor[s] = node
self.extract_cycle(s)
24 if self.predecessor([s] is None:

vertex is on the
current path.

25 self .predecessor[s] = node
26 self .dfs(graph, s)

27 self.on_current_path[node] = False

G. Réger (University of Basel)

Algorithms and Data Structures May 2, 2024 21 / 40

C2. Graph Exploration: Applications

Cycle Detection: Algorithm (Continued)

30
31
32
33
34
35
36
37

G. Réger (University of Basel)

Acyclic Graphs

When calling extract_cycle, node is on a cycle in
self.predecessor.

def extract_cycle(self, node):
self.cycle = deque()
current = node
self.cycle.appendleft (current)
while True:

if current

return

current = self.predecessor[current]
self.cycle.appendleft(current)
== node:

Algorithms and Data Structures

May 2, 2024

22 / 40

C2. Graph Exploration: Applications

Jupyter Notebook

Acyclic Graphs

@
VR
Jupyter
o

Jupyter notebook: graph_exploration_applications.ipynb

G. Réger (University of Basel)

Algorithms and Data Structures May 2, 2024 23 / 40

C2. Graph Exploration: Applications

Content of the Course

G. Réger (University of Basel)

Acyclic Graphs

{ representation ‘

{

reachability

1

{

{

sorting ‘
{ exploration ‘
complexity
fundamental
data structures minimum
— spanning
searching ‘ trees
B shortest
paths
concepts ‘ other
problems

Algorithms and Data Structures

shortest paths ‘
ﬂ cycle detection ‘

connected
components

May 2, 2024

24 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort

Definition

A topological sort of a directed acyclic graph G = (V,E) is a
linear ordering of all its vertices such that if G contains an edge
(u,v), then u appears before v in the ordering.

For example relevant for scheduling:
edge (u, v) expresses that job u must be completed before job v
can be started.

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 25 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort: lllustration

OGO
Vg ’e
& Kl
@D
Topological sort: 4, 6, 1, 3,0, 2, 5

ogONOSOMOPFOS: NOFOE0

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort: Algorithm

Theorem
For the reachable part of a acyclic graph, the reverse DFS
postorder is a topological sort.

Algorithm:
» Sequence of depth-first searches (for still unvisited vertices)
until all vertices visited.
> Store for each DFS the reverse postorder:
P; for i-th search
» Let k be the number of searches. Then the concatenation
Py, ..., P1 is a topological sort.

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 27 / 40

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 26 / 40
C2. Graph Exploration: Applications Acyclic Graphs
Jupyter Notebook
OA'
Jupyter notebook: graph_exploration_applications.ipynb
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 28 / 40

C2. Graph Exploration: Applications

C2.4 Connected Components

G. Réger (University of Basel) Algorithms and Data Structures

Connected Components

May 2, 2024 29 / 40

C2. Graph Exploration: Applications

Content of the Course

G. Réger (University of Basel)

4+ representation ‘ 4+ reachability ‘
{ sorting ‘
{ exploration ‘{ shortest paths ‘
complexity
analysis ﬂ cycle detection ‘
| | fundamental { topological sort ‘
- data structures minimum
— spanning
4+ searching ‘ trees
B shortest
paths
4+ concepts ‘47 other
problems

Algorithms and Data Structures

May 2, 2024

Connected Components

30 / 40

C2. Graph Exploration: Applications

Connected Components of Undirected Graphs

Undirected graph

Connected Components

> Two vertices u and v are in the same connected component

if there is a path between v and v.
Rl
(2)—() (78
(4)
(5) (9)

G. Réger (University of Basel) Algorithms and Data Structures

May 2, 2024 31 / 40

C2. Graph Exploration: Applications

Connected Components: Interface

© 0 N A W N

10
11
12
13

G. Réger (University of Basel)

We want to implement the following interface:

class ConnectedComponents:
Initialization with precomputation
def __init__(graph: UndirectedGraph) -> None

Are vertices model and mode2 connected?
def connected(nodel: int, node2: int) -> bool

Number of comnected components
def count() -> int

Component number for node
(between 0 and count()-1)
def id(node: int) -> int

Idea: Sequence of graph explorations until all vertices visited.
ID of vertex corresponds to iteration in which it was visited.

Algorithms and Data Structures May 2, 2024

Connected Components

32 /40

C2. Graph Exploration: Applications

Connected Components: Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

G. Réger (University of Basel)

class ConnectedComponents:
def __init__(self, graph):

self.id = [None] * graph.no_nodes()

self.curr_id = 0

visited = [False] * graph.no_nodes()

for node in range(graph.no_nodes()):

if not visited[node]:

self.dfs(graph, node, visited)
self.curr_id += 1

def dfs(self, graph, node, visited):
if visited[node]:

return
visited[node] = True
self.id[node] = self.curr_id

for n in graph.neighbours(node):
self.dfs(graph, n, visited)

How are connected, count and id implemented?

Algorithms and Data Structures May 2, 2024

Connected Components

33 /40

C2. Graph Exploration: Applications Connected Components

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: graph_exploration_applications.ipynb

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 34 / 40

C2. Graph Exploration: Applications

Connected Components of Directed Graphs

G. Réger (University of Basel)

Directed graph G

> If one ignores the arc directions, then every connected
component of the resulting undirected graph is a weakly
connected component of G.

> G is strongly connected, if there is a directed path from each
vertex to each other vertex.

» A strongly connected component of G is a maximal strongly
connected subgraph.

Algorithms and Data Structures May 2, 2024

Connected Components

35 / 40

C2. Graph Exploration: Applications Connected Components

Strongly Connected Components

a‘a‘ o
. e 8 0—0

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 36 / 40

C2. Graph Exploration: Applications

Strongly Connected Components

Kosaraju' algorithm

» Given directed graph G = (V, E), compute a reverse
postorder P (for all vertices) of the graph
GR = (V,{(v,u) | (u,v) € E}) (all edges reversed).

» Conduct a sequence of explorations in G, always selecting the
first still unvisited vertex in P as the next start vertex.

> All vertices that are reached by the same exploration, are in
the same strongly connected component.

G. Réger (University of Basel) Algorithms and Data Structures

May 2, 2024 37/

Connected Components

40

C2. Graph Exploration: Applications

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: graph_exploration_applications.ipynb

Connected Components

C2. Graph Exploration: Applications Summary

C2.5 Summary

G. Réger (University of Basel) Algorithms and Data Structures

May 2, 2024 39 /

40

G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 38 /40
C2. Graph Exploration: Applications Summary
Summary
We have seen a number of applications of graph exploration:
» Reachability
» Shortest paths
» Cycle detection
» Topological sort
» Connected components
Some applications require a specific exploration, for other
applications we can use both, BFS and DFS.
G. Réger (University of Basel) Algorithms and Data Structures May 2, 2024 40 / 40

	Reachability
	

	Shortest Paths
	

	Acyclic Graphs
	

	Connected Components
	

	Summary
	

