Algorithms and Data Structures

C2. Graph Exploration: Applications

Gabriele Röger
University of Basel

May 2, 2024

Algorithms and Data Structures

May 2, 2024 - C2. Graph Exploration: Applications

C2.1 Reachability
C2.2 Shortest Paths
C2.3 Acyclic Graphs
C2.4 Connected Components
C2.5 Summary

Reminder: Graph Exploration

- Given a vertex v, visit all vertices that are reachable from v.
- Often used as part of other graph algorithms.
- Depth-first search: go "deep" into the graph (away from v)
- Breadth-first search: first all neighbours, then neighbours of neighbours, ...

Content of the Course

C2.1 Reachability

Content of the Course

Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.

- Directed graph: Objects as vertices, references to objects as edges.
- One bit per object for marker during garbage collection.
- Mark: Mark all reachable objects (set bit to 1).
- Sweep: Clear unmarked objects from memory. Afterwards set bit for all reachable objects back to 0 .

Magic Wand in Image Editing

C2.2 Shortest Paths

Content of the Course

Shortest Paths: Idea

- Breadth-first search visits the vertices with increasing (minimal) distance from the start vertex.
- First visit of a vertex happens on shortest path.
- Idea: Use path from induced search tree.

Jupyter Notebook

jupyter

Jupyter notebook: graph_exploration_applications.ipynb

Shortest-path Problem

Single-source Shortest-paths Problem

- Given: Graph and start vertex s
- Query for vertex v
- Is there a path from s to v ?
- If yes, what is the shortest path?
- Abbreviation SSSP

Shortest Paths: Algorithm

```
class SingleSourceShortestPaths:
    \(\begin{array}{ll}2 & \text { def __init__(self, graph, start_node) : } \\ 3 & \text { self.predecessor }=\text { [None] * graph.no_nodes () } \\ 4 & \text { self.predecessor [start_node] = start_node }\end{array}\)
    \(\begin{aligned} \text { def } & \text { __init__(self, graph, start_node): } \\ & \text { self.predecessor }=\text { [None] } * \text { graph.no_nodes () } \\ & \text { self.predecessor [start_node] }=\text { start_node }\end{aligned}\)
    \(\begin{aligned} \text { def } & \text { __init__(self, graph, start_node): } \\ & \text { self.predecessor }=\text { [None] } * \text { graph.no_nodes () } \\ & \text { self.predecessor [start_node] }=\text { start_node }\end{aligned}\)
        \# precompute predecessors with breadth-first search with
        \# self.predecessors used for detecting visited nodes
        queue = deque()
        queue.append (start_node)
        while queue:
            \(\mathrm{v}=\) queue.popleft()
                                    In principle as before
            for \(s\) in graph. successors(v): (just as a class)
        if self.predecessor[s] is None:
            self.predecessor \([s]=\mathrm{v}\)
                queue. append(s)
```

16

Shortest Paths: Algorithm (Continued)

```
def has_path_to(self, node):
        return self.predecessor[node] is not None
def get_path_to(self, node):
    if not self.has_path_to(node):
        return None
    if self.predecessor[node] == node: # start node
        return [node]
    pre = self.predecessor[node]
    path = self.get_path_to(pre)
    path.append(node)
    return path
```

Running time?
Later: Shortest paths with edge weights

C2.3 Acyclic Graphs

Content of the Course

Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)
A directed acyclic graph (DAG) is a directed graph that contains no directed cycles.

Task: Decide whether a directed graph contains a cycle. If yes, return a cycle.

Criterion for Acyclicity

Induced search tree of a depth-first search (orange) and possible other edges

The (reachable part of the) graph is acyclic if and only if there are no back edges.

Idea: Remember the vertices on the current path in a DFS.

Cycle Detection: Algorithm

1 class DirectedCycle:

```
    def __init__(self, graph):
```

 def __init__(self, graph):
 self.predecessor = [None] * graph.no_nodes()
 self.on_current_path = [False] * graph.no_nodes()
 self.cycle = None
 for node in range(graph.no_nodes()):
 if self.has_cycle():
 break
 if self.predecessor[node] is None:
 self.predecessor[node] = node
 self.dfs(graph, node) k
    ```
                Repeated depth-first
```

 def has_cycle(self):
 return self.cycle is not None
    ``` searches such that at the end all vertices have been visited.

\section*{Cycle Detection: Algorithm (Continued)}
```

 def dfs(self, graph, node):
 self.on_current_path[node] = True
 for s in graph.successors(node):
 if self.has_cycle():
 return
 Found }->\mathrm{ if self.on_current_path[s]:
cycle self.extract_cycle(s)
if self.predecessor[s] is None:
self.predecessor[s] = node
self.dfs(graph, s)
self.on_current_path[node] = False

```

\section*{Cycle Detection: Algorithm (Continued)}

When calling extract_cycle, node is on a cycle in self.predecessor.
```

def extract_cycle(self, node):
self.cycle = deque()
current = node
self.cycle.appendleft(current)
while True:
current = self.predecessor[current]
self.cycle.appendleft(current)
if current == node:
return

```

\section*{Jupyter Notebook}

\section*{jupyter}

Jupyter notebook: graph_exploration_applications.ipynb

\section*{Content of the Course}


\section*{Topological Sort}

\section*{Definition}

A topological sort of a directed acyclic graph \(G=(V, E)\) is a linear ordering of all its vertices such that if \(G\) contains an edge ( \(u, v\) ), then \(u\) appears before \(v\) in the ordering.

For example relevant for scheduling:
edge ( \(u, v\) ) expresses that job \(u\) must be completed before job \(v\) can be started.

\section*{Topological Sort: Illustration}


Topological sort: 4, 6, 1, 3, 0, 2, 5


\section*{Topological Sort: Algorithm}

Theorem
For the reachable part of a acyclic graph, the reverse DFS postorder is a topological sort.

Algorithm:
- Sequence of depth-first searches (for still unvisited vertices) until all vertices visited.
- Store for each DFS the reverse postorder:
\(P_{i}\) for \(i\)-th search
- Let \(k\) be the number of searches. Then the concatenation \(P_{k}, \ldots, P_{1}\) is a topological sort.

\section*{Jupyter Notebook}

\section*{jupyter}

Jupyter notebook: graph_exploration_applications.ipynb

\section*{C2.4 Connected Components}

\section*{Content of the Course}


\section*{Connected Components of Undirected Graphs}

Undirected graph
- Two vertices \(u\) and \(v\) are in the same connected component if there is a path between \(u\) and \(v\).

(9)

\section*{Connected Components: Interface}

We want to implement the following interface:
```

class ConnectedComponents:
\# Initialization with precomputation
def __init__(graph: UndirectedGraph) -> None
\# Are vertices node1 and node2 connected?
def connected(node1: int, node2: int) -> bool
\# Number of connected components
def count() -> int
\# Component number for node
\# (between O and count()-1)
def id(node: int) -> int

```

Idea: Sequence of graph explorations until all vertices visited. ID of vertex corresponds to iteration in which it was visited.

\section*{Connected Components: Algorithm}
```

class ConnectedComponents:

```
```

def __init__(self, graph):

```
def __init__(self, graph):
    self.id = [None] * graph.no_nodes()
    self.id = [None] * graph.no_nodes()
    self.curr_id = 0
    self.curr_id = 0
    visited = [False] * graph.no_nodes()
    visited = [False] * graph.no_nodes()
    for node in range(graph.no_nodes()):
    for node in range(graph.no_nodes()):
        if not visited[node]:
        if not visited[node]:
        self.dfs(graph, node, visited)
        self.dfs(graph, node, visited)
        self.curr_id += 1
        self.curr_id += 1
    def dfs(self, graph, node, visited):
    if visited[node]:
        return
    visited[node] = True
    self.id[node] = self.curr_id
    for n in graph.neighbours(node):
        self.dfs(graph, n, visited)
```

How are connected, count and id implemented?

Jupyter Notebook

jupyter

Jupyter notebook: graph_exploration_applications.ipynb

Connected Components of Directed Graphs

Directed graph G

- If one ignores the arc directions, then every connected component of the resulting undirected graph is a weakly connected component of G.
- G is strongly connected, if there is a directed path from each vertex to each other vertex.
- A strongly connected component of G is a maximal strongly connected subgraph.

Strongly Connected Components

Strongly Connected Components

Kosaraju' algorithm

- Given directed graph $G=(V, E)$, compute a reverse postorder P (for all vertices) of the graph $G^{R}=(V,\{(v, u) \mid(u, v) \in E\})$ (all edges reversed).
- Conduct a sequence of explorations in G, always selecting the first still unvisited vertex in P as the next start vertex.
- All vertices that are reached by the same exploration, are in the same strongly connected component.

Jupyter Notebook

jupyter

Jupyter notebook: graph_exploration_applications.ipynb

C2.5 Summary

Summary

We have seen a number of applications of graph exploration:

- Reachability
- Shortest paths
- Cycle detection
- Topological sort
- Connected components

Some applications require a specific exploration, for other applications we can use both, BFS and DFS.

