Algorithms and Data Structures
C1. Graphs: Foundations and Exploration

Gabriele Roger
University of Basel

April 25, 2024

Algorithms and Data Structures
April 25, 2024 — C1. Graphs: Foundations and Exploration

C1.1 Motivation

C1.2 Definition

C1.3 Representation
C1.4 Graph Exploration

C1.5 Summary

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 1/44
Content of the Course
representation
— sorting
exploration
complexity
analysis applications
of exploration
fundamental
data structures minimum
spanning
- searching trees
shortest
paths
— concepts other
problems
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 3 / 44

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 2 /44
C1. Graphs: Foundations and Exploration Motivation
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 4/ 44

C1. Graphs: Foundations and Exploration

Street Maps

Motivation

caintkouise.
AT

Woa ¥l s

amninGen
\ worTenz y N
e
woncHESTEN i rraTre:
openstreetmap.org

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 5 /44

C1. Graphs: Foundations and Exploration

Route Networks

© wachwtenees

RO 6 rekmgaten
3
spiowakd O, Mo
O Nederteld % Mghacker
8 1
pr—— o,
— [Ru——3

G. Réger (University of Basel)

20mE 10

ot

st G
oy

Motivation

o
.
W

Bickenwes &
antingen .
&

enmes
¢

&
nicg ¥

ey
°

—
[
o

Algorithms and Data Structures

April 25, 2024 6 / 44

C1. Graphs: Foundations and Exploration Motivation

Navigation Networks in Games

heroengine.com

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 7/ 44

C1. Graphs: Foundations and Exploration

Motivation

Urban Supply System

GeltlS - GIS Gelterkinden

% Leitungskataster Basel-
Landschaft (KBL)
@ o Abwasser

9 wasser

9 cas

@M rermvaerme
@ Bekuriziact

@ M Kommunikation

Tass

o2z vasras

G. Réger (University of Basel)

dgis.info

Algorithms and Data Structures April 25, 2024 8 /44

C1. Graphs: Foundations and Exploration Motivation

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

C1. Graphs: Foundations and Exploration Motivation

Social Networks

facebook

. Visualizing Friendships" by Paul Butler

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 10 / 44

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 9 / 44
C1. Graphs: Foundations and Exploration Motivation
Collaboration
LINKED JAZZ .
AN Toshio Akiyoshi AR N\ 3 L. - =
N S N SRl : 5 . i = =
Narty wison
i sohnLovy
Annie Ross
> 4
Danny Barker
Abbey Lincoln . > ;e p 57
. o
s % -Mawmuwwamls_ouie Bellson
+ DwoBhbox .
linkedjazz.org
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 11 / 44

C1. Graphs: Foundations and Exploration Motivation

Protein Interaction

Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,
Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 12 / 44

C1. Graphs: Foundations and Exploration Motivation

Possible Questions

> Are A and B connected?
> What is the shortest connection between A and B?
» What is the longest distance between two elements?

» How much water can the sewer system discharge?

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 13 / 44

C1. Graphs: Foundations and Exploration Motivation

Abstract Graphs

A Graph consists of vertices and edges between vertices.

Vertices Edges
Streets Crossing Street segment
Internet AS (= Provider) Route
Facebook Person Friendship
Proteins Protein Interaction

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 14 / 44

C1. Graphs: Foundations and Exploration Definition

C1.2 Definition

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 15 / 44

C1. Graphs: Foundations and Exploration Definition

Undirected and Directed Graphs

T @
(e 14)
& v

undirected graph directed graph

oSG
e
&

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 16 / 44

C1. Graphs: Foundations and Exploration Definition

Graphs

» A graph is a pair (V, E) comprising
> V: finite set of vertices
» E: finite set of edges
> Every edge connects two vertices u and v
> undirected graph: set {u, v}
> directed graph: pair (u,v)
> Multigraphs permit multiple parallel edges between the same
nodes.

> Weighted graphs associate each edge with a weight (a
number).

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 17 / 44

C1. Graphs: Foundations and Exploration Definition

Directed Graphs: Terminology

» Successors of vertex u: all vertices v with (u,v) € E.
> Predecessors of vertex u: all vertices v with (v, u) € E.
» outdegree(v): outdegree = number of successors

» indegree(v): indegree = number of predecessors

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 19 / 44

C1. Graphs: Foundations and Exploration Definition
Undirected Graphs: Terminology
» Neighbours of a vertex u: all vertices v with {u,v} € E.
» degree(v): Degree of a vertex = Number of neighbours.
» Exception: Self-loops increase the degree by 2.
Self-loop = edge that connects a vertex with itself.
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 18 / 44
C1. Graphs: Foundations and Exploration Definition
Paths and Cycles
» Path of length n: Sequence (v, ..., v,) of vertices with
> {vi,viy1} € Efori=0,...,n—1 (undirected graph)
» (vi,Vviy1) € Efori=0,...,n—1 (directed graph)
» The path is simple if all vertices are distinct.
» Example: (5,4,1,2)
» Cycle: Path with equal start and end vertex (vp = vj)
of length > 0.
> (6,7,9,8,6) in the undirected and
(5,2,1,3,5) in the directed example graph
» The cycle is simple if all vertices v1,..., v, are distinct.
P if there is no simple cycle, the graph is acyclic.
Path of
9‘9 length 3
Path of @D—@3) 7
length 3™ Cy
® @‘0 “leng
®—9
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 20 / 44

C1. Graphs: Foundations and Exploration Representation

C1.3 Representation

C1. Graphs: Foundations and Exploration Representation

Content of the Course

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 21 / 44
C1. Graphs: Foundations and Exploration Representation
Representation of Vertices
» We use numbers 0 to |V/| — 1 for the vertices.
» If not the case in application: Us a map to convert from
names to numbers.
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 23 / 44

— sorting
= exploration
complexity
analysis applications
of exploration
fundamental
- data structures minimum
= spanning
- searching trees
shortest
paths
| concepts other
problems
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 22 / 44
C1. Graphs: Foundations and Exploration Representation

Adjacency-matrix Representation

Graph G = ({0,...,|V]| — 1}, E) represented as |V/| x |V/| matrix
with entries aj, (in row i, column k):
1 if (i, k) € E (directed graph) or
aj = {i, k} € E (undirected graph)
0 otherwise

’0 01100
10000 .
O 3) A—1lo 0 0 0 1 For undlr_ected graphs
symmetric
53 10110
‘ 00110
@
G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 24 / 44

C1. Graphs: Foundations and Exploration Representation

Adjacency-list Representation

Store for every vertex the list of successors / neighbours.

H

HH
HH

N
L]
<

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 25 / 44

C1. Graphs: Foundations and Exploration Representation

Representation: Complexity

Adj. matrix
Space |V|? |E| + |V
Add edge 1 1
Edge between u and v? 1 (out)degree(v)
Iterate over outgoing edges V| (out)degree(v)

Often sparse graphs (low average degree)
Which representation?

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 26 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

C1.4 Graph Exploration

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 27 | 44

C1. Graphs: Foundations and Exploration Graph Exploration

Content of the Course

depth-first
— representation [search
— sorting
| Sploration L | breadth-first
complexity search
analysis applications
| | of exploration induced
fundamental | search tree
|| data structures minimum
- — spanning
- searching trees
shortest
N paths
— concepts other
N problems

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 28 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Graph Exploration

» Task: Given a vertex v, visit all vertices that are reachable
from v.

» Often used as ingredient of other graph algorithms.

v

Depth-first search: go “deep” into the graph (away from v)

» Breadth-first search: first all neighbours, then neighbours of
neighbours, ...

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 29 / 44

C1. Graphs: Foundations and Exploration

Depth-first Search

Mark visited vertices
> Mark v

> lterate over the successors/neighbours w of v.
» If w not marked, start recursively from w.

Abbreviation: DFS

G. Réger (University of Basel) Algorithms and Data Structures

Graph Exploration

April 25, 2024 30 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Example

Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex 0 marks vertices in order
0-1-2-4-5-3

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 31 /44

C1. Graphs: Foundations and Exploration

Depth-first Search: Algorithm (Recursive)

Graph Exploration

def depth_first_exploration(graph, node, visited=None):

1

2 if visited is None:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

If we expect that most vertices will be visited:
bool array instead of set for visited

G. Réger (University of Basel) Algorithms and Data Structures

April 25, 2024 32 / 44

C1. Graphs: Foundations and Exploration

Depth-first Vertex Orders

Graph Exploration

» Preorder: Vertex is included before its children are considered.

» Postorder: Vertex is included when the (recursive) depth-first
search of all its children has finished.

» Reverse Postorder: Like postorder, but in reverse order.

1 def depth_first_exploration(graph, node, visited):
2 if node in visited:

3 return

4 preorder.append (node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)
8 postorder.append(node)

9 reverse_postorder.appendleft (node)

(Representation of vertex sequence as a deque.)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 33 / 44

C1. Graphs: Foundations and Exploration

Depth-first Search: Algorithm (Iterative)

1 def depth_first_exploration(graph, node):
2 visited = set()

3 stack = deque()

4 stack.append(node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 stack.append(s)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024

Graph Exploration

34 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search in Practise

bl-""“'-!‘ OKAY, WHAT KINDS OF HM. WHICH SNAKES, ARE
\WHAT SITUATIONS EMERGENCIES CANHAPPEN? DANGEROUS? LETS SEE... THE RESEARCH (OMPAARING

MGHT T PREPARE FRY 1) A) SNAKERITE. | DWGER SNAKE VENOMS 15 SCATTERED
) MEDGALEMERGENCY | B) LIGHTNNG STRKE ’”‘3 e 7 PADWOWTENT TLLTAE

2) DANCING © PRULRM CHAR COPFERHEAD
2)Ro0D Too BFENSVE [11Nmzpwwaunu1 2
L"uwmv’ o] 0 o
o o) 0 0
0

TMHEREDPIOS BY LDy, THE INAND
YOUUR YoURE TAIPAN HAS THE EADLEST
NOT DRESSED? VENH OF EalY SNAKE':

\ J

% &

T REALLY NEED o SToP
USING DEPTH-FIRST SEPRCHES.

https://xked.com/761/

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 35 / 44

C1. Graphs: Foundations and Exploration

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

> Mark v
— Distance 0

» Mark all unmarked successors/neighbours of v
— Distance 1

» Mark all unmarked successors/neighbours of vertices with
distance 1.

» Mark all unmarked successors/neighbours of vertices with
distance 2.

» Until vertices of distance i do not have unmarked
successors/neighbours.

Abbreviation: BFS

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024

Graph Exploration

36 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start

@\ vertex 0 marks vertices in order

oSy 0-1-3-2-4-5

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 37 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Conceptually)

Only difference to iterative depth-first search:
First-in-first-out treatment of vertices (instead of last-in-first-out)

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 queue . append (node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 queue. append(s)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 38 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Somewhat more Efficient)

We only further consider a vertex when we first run across it.
We can directly mark it as visited and disregard it if we see it again.

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue . append (node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):
9 if s not in visited:

10 visited.add(s)

11 queue. append(s)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 39 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Running Time

For all algorithm variants:
» Every reachable vertex gets marked.
> We follow every reachable edge exactly once.
» Running time O(|V/| + |E|)

» We can restrict this to the reachable vertices and edges.

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 40 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its
predecessor in the exploration.

depth-first search

breadth-first search

(induced search tree # binary search tree)

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 41 / 44

C1. Graphs: Foundations and Exploration

Induced Search Tree: Example BFS

» Every vertex has at most one predecessor in the tree.
» Represent induced search tree by the predecessor relation.

» The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

1 def bfs_with_predecessors(graph, node):

2 predecessor = [None] * graph.no_nodes()
3 queue = deque()

4 # use self-loop for start node

5 predecessor [node] = node

6 queue. append (node)

7 while queue:

8 v = queue.popleft()

9 for s in graph.successors(v):

10 if predecessor[s] is None:
11 predecessor[s] = v
12 queue. append(s)

G. Réger (University of Basel)

Algorithms and Data Structures April 25, 2024 42 /

Graph Exploration

44

C1. Graphs: Foundations and Exploration Summary

C1.5 Summary

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 43 / 44

C1. Graphs: Foundations and Exploration Summary

» Graphs consist of vertices and edges.

» Edges can be directed or undirected.

» Graph exploration systematically visits all vertices that can be
reached from the given vertex.
» Depth-first search goes “deeper” into the graph whenever
possible.
» Breadth-first search first visits the vertices that are closer to
the start vertex.

G. Réger (University of Basel) Algorithms and Data Structures April 25, 2024 44

/ 44

	Motivation
	

	Definition
	

	Representation
	

	Graph Exploration
	

	Summary
	

