Algorithms and Data Structures
B6. Red-Black Trees

Gabriele Röger
University of Basel

April 18/24, 2024

Algorithms and Data Structures
April 18/24, 2024 - B6. Red-Black Trees

B6.1 Red-Black Trees

B6.2 Insertion (and Deletion)

B6.3 Summary
G. Röger (University of Basel)

Algorithms and Data Structures
April 18/24, 2024

Red-Black Trees: Representation

- Use one extra bit per node, storing its color, which can be either red or black.
- Each node now contains attributes color, key, left, right and parent.

None Leaf Nodes

- Left, right and parent are None if there is no corresponding node.
- Because it is conceptionally and implementation-wise easier, we will represent them as actual node objects.
- These are then the leaves of the trees and the nodes holding the entries are inner nodes.

G. Röger (University of Basel)

Algorithms and Data Structures
April 18/24, 2024 6/32

None Leaf Nodes: Sentinel

Instead of many leaf nodes, we use a single sentinel node nil.

- Implemented like a normal (black) node but used as child of many nodes.
- The sentinel also serves as parent of the root.
- Attributes for parent and children can take on arbitrary values.

Graphical Representation

On the slides, we omit the None leaf nodes/sentinel:

Red-Black Trees

Definition (Red-Black Tree)

A red-black tree is a binary search tree that satisfies the following red-black properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (None node) is black.
(9) If a node is red, then both its children are black.For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

Quiz II: Is this a Red-Black Tree?

Reminder: A red-black tree is a binary search tree where

Reminder: A red-black tree is a binary search tree where:
(1) Every node is either red or black.
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (None node) is black.
(9) If a node is red, then both its children are black.
(9) If a node is red, then both its children are black.
(3) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

Reminder: A red-black tree is a binary search tree where

(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (None node) is black.
(9) If a node is red, then both its children are black.
(3) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
G. Röger (University of Basel) Algorithms and Data Structures April 18/24, 2024

Reminder: A red-black tree is a binary search tree where:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (None node) is black.
(1) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
G. Röger (University of Basel)

Algorithms and Data Structures
April 18/24, 2024

B6. Red-Black Trees

Red-Black Trees

Height of Red-Black Tree

Proof (continued).

Height of x is $0: x$ is a leaf and the subtree rooted at x contains $2^{\text {bh(}(x)}-1=2^{0}-1=0$ inner nodes.

Inductive step: x has positive height.
Then x has two children. If a child is black, it contributes 1 to x 's black-height but not to its own. If a child is red, then it contributes to neither x 's black-height nor its own.
Therefore, each child has a black-height of $\operatorname{bh}(x)-1$ or $\operatorname{bh}(x)$.
Since the height of the child is smaller than the one of x, by the inductive hypothesis the subtree rooted by each child has at least $2^{\operatorname{bh}(x)-1}-1$ inner nodes.
Thus, the subtree rooted by x contains at least $2\left(2^{\mathrm{bh}(x)-1}-1\right)+1=2^{\mathrm{bh}(x)}-1$ inner nodes.

Proof (continued).
We showed that that the subtree rooted at any node x contains at least $2^{\mathrm{bh}(x)}-1$ inner nodes.

Let h be the height of the tree. Since both children of a red node must be black, at least half of the nodes on any simple path from the root to a leaf (not including the root) must be black.
Thus, the black-height of the root is at least $h / 2$ and thus $n>2^{h / 2}-1$.

Moving the 1 to the left-hand side and taking logarithms on both sides yields $\log _{2}(n+1) \geq h / 2$, or $h \leq 2 \log _{2}(n+1)$.

Theorem
A red-black tree with n inner nodes has height at most $2 \log _{2}(n+1)$.

- The height of a red-black tree is in $O\left(\log _{2} n\right)$.
- Red-black trees are binary search trees.
- On binary search trees, search(n, k), minimum (n), maximum(n), successor(n), predecessor(n) can run in time $O(h)$ (cf. Ch. B5).
- We can use the same implementation for red-black trees, achieving running time $O\left(\log _{2}(n)\right)$ for all these queries.

Modifying Red-Black Trees

We cannot simply use the insertion and deletion implementation from binary search trees (Why not?).

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Insert (and delete) a number of keys into the red-black tree. What do you observe?

Rotation

- Inserting and deleting nodes as in binary search trees does not preserve the red-black property.
- Rotation is an operation that transforms the structure of the tree but preserves the binary-search-tree property.
- Two variants: left and right rotation.
- We use them to re-establish the red-black property during an insertion/deletion.

G Räger (University of Basel)
Algorithms and Data Structures

Left-Rotation
class RedBlackTree:
def __init__(self):
self.nil = Node(None, None, color=BLACK) \# sentinel self.root = self.nil
def left_rotate(self, x):
y = x.right
x.right = y.left
if y.left is not self.nil
y.left. parent $=x$

y.parent = x.parent
if x .parent is self.nil: \# x was root node
self.root $=\mathrm{y}$
elif x is x .parent.left:
x .parent.left $=\mathrm{y}$
else:
x.parent.right $=y$
$y . l e f t=x$
x.parent $=y$
G. Röger (University of Basel)

Algorithms and Data Structures April 18/24, 2024

B6. Red-Black Trees

Reminder: Red-Black Trees

Definition (Red-Black Tree)
A red-black tree is a binary search tree that satisfies the following red-black properties:
(1) Every node is either red or black.
(3) The root is black.

- Every leaf (None node) is black.If a node is red, then both its children are black.
- For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

What could be violated before the fixup? Only 2 or 4 !
Property 2 is easy to re-establish: Just color the root black.
For property 4, distinguish three cases...

Potential problem: node and its parent are both red (the only violation of red-black property 4).
Case 1: The uncle (parent's sibling) of node is red.

- The grandparent of node cannot be red (by property 4).
- Idea: Make grandparent red and parent and uncle black.
- Afterwards: Need to fixup grandparent (its parent could be red).

G Röger (University of Basel)
Algorithms and Data Structures

Insertion: Running Time
def insert(self, key, value):
current $=$ self.root
parent $=$ self.nil
while current is not self.nil:
parent = current

$$
\begin{array}{ll}
\begin{array}{l}
\text { if current. key > key: } \\
\quad \text { current }=\text { current.left }
\end{array} & \text { Running time: } \\
\text { else: } & O(h)
\end{array}
$$

node $=$ Node(key, value, color=RED)
node.parent = parent
if parent is self.nil: \# tree was empty
self.root $=$ node
elif key < parent.key:
parent.left = node
else:
parent.right $=$ node
node.left = self.nil \# explicit leaf nodes
node.right $=$ self.nil
self.fixup(node)

than inserting a node.

Deleting a node from a red-black tree is more complicated

- We do not cover the details in this course.
- Deletion from a tree with n nodes is possible
in time $O\left(\log _{2} n\right)$.

B6. Red-Black Trees Summary - Red-black trees are a special kind of binary search trees that are approximately balanced. - The height of a red-black tree with n nodes is $O\left(\log _{2} n\right)$. - Consequently, the query operations only take logarithmic tim in the size of the tree. - The same is true for insertion and deletion.			Summary			
			Summary			

