
Algorithms and Data Structures
B4. Hash Tables

Gabriele Röger

University of Basel

April 11/17, 2024

Introduction Chaining Open Addressing Hash Functions Summary

Introduction

Introduction Chaining Open Addressing Hash Functions Summary

Direct-address Table

Assume you want to store elements that are associated with
keys from a fixed universe U = {0, 1, . . . , k}.
For every key, you need to store at most one element.

Idea: Use array T (= direct access table), storing at position i
a pointer to the element with key i .

Inserting, removing and accessing the element for a key takes
constant time.

0 1 2 3 4 5 6 7 8

key: 3 [satellite data]

key: 6 [satellite data]

key: 8 [satellite data]

- - - - - -

Introduction Chaining Open Addressing Hash Functions Summary

Disadvantages of Direct-address Table

If the universe is large or infinite, storing a table of size |U|
may be impractical or impossible.

If the number of stored entries is small compared to the size
of the universe, most space allocated for T would be wasted.

Introduction Chaining Open Addressing Hash Functions Summary

Hash Table

Use a smaller array T (= the hash table) of size m, and

a hash function h : U → {0, . . . ,m− 1}, mapping the universe
of keys into the possible positions in T .
For example h(k) = k mod m

We call h(k) the hash value of key k .

Problem: possible collisions

Different keys mapped to same hash value.
Unavoidable if |U| > m.

Need collision resolution strategy. We will cover two methods:

Chaining
Open Addressing

Introduction Chaining Open Addressing Hash Functions Summary

Hash Table

Use a smaller array T (= the hash table) of size m, and

a hash function h : U → {0, . . . ,m− 1}, mapping the universe
of keys into the possible positions in T .
For example h(k) = k mod m

We call h(k) the hash value of key k .

Problem: possible collisions

Different keys mapped to same hash value.
Unavoidable if |U| > m.

Need collision resolution strategy. We will cover two methods:

Chaining
Open Addressing

Introduction Chaining Open Addressing Hash Functions Summary

Chaining

Introduction Chaining Open Addressing Hash Functions Summary

Hashing with Chaining

Every non-empty hash-table position i points to a doubly linked list
(the chain) of all the keys whose hash value is i :

Universe U
(of keys)

used keys
k0

k1

k2

k3

k4

k5

k6

k7

k8 / k6 k0 k7 /

/ k4 k3 /

/ k1 /

h(k0) = h(k6) = h(k7) = 0

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Implementation

Search for an entry with key k

Search for entry with key k in list T [h(k)].

Remove entry with key k

Search for and remove element with key k from list T [h(k)].

Insert an entry e with key k

Search for entry with key k in list T [h(k)].
If found: update linked list node to hold e.
If not found: prepend entry to list at T [h(k)].

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Implementation

Search for an entry with key k

Search for entry with key k in list T [h(k)].

Remove entry with key k

Search for and remove element with key k from list T [h(k)].

Insert an entry e with key k

Search for entry with key k in list T [h(k)].
If found: update linked list node to hold e.
If not found: prepend entry to list at T [h(k)].

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Implementation

Search for an entry with key k

Search for entry with key k in list T [h(k)].

Remove entry with key k

Search for and remove element with key k from list T [h(k)].

Insert an entry e with key k

Search for entry with key k in list T [h(k)].
If found: update linked list node to hold e.
If not found: prepend entry to list at T [h(k)].

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time I

Assumption: Computing h(k) takes constant time.

The running time of all operations is dominated by the
running time of the linked-list operations.

All operations linear in the size of the involved linked list.

Worst-case: All entries have the same hash value.
⇝ worst-case running time linear in the number of entries

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time I

Assumption: Computing h(k) takes constant time.

The running time of all operations is dominated by the
running time of the linked-list operations.

All operations linear in the size of the involved linked list.

Worst-case: All entries have the same hash value.
⇝ worst-case running time linear in the number of entries

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time I

Assumption: Computing h(k) takes constant time.

The running time of all operations is dominated by the
running time of the linked-list operations.

All operations linear in the size of the involved linked list.

Worst-case: All entries have the same hash value.
⇝ worst-case running time linear in the number of entries

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time I

Assumption: Computing h(k) takes constant time.

The running time of all operations is dominated by the
running time of the linked-list operations.

All operations linear in the size of the involved linked list.

Worst-case: All entries have the same hash value.
⇝ worst-case running time linear in the number of entries

Introduction Chaining Open Addressing Hash Functions Summary

Independent Uniform Hashing

“Ideal” hash function: for each key k , hash value h(k) is
randomly and independently chosen uniformly from the range
{0, . . . ,m − 1} (with m size of hash table).

Subsequent calls of h(k) for the same key k give the same
output.

Such a h is called a independent uniform hash function.

Cannot reasonably be implemented in practise but useful for
theoretical analysis.

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time II

Load factor α is defined as n/m, where

m is the number of positions (slots) in the hash table, and
n is the number of stored elements.

α is the average number of entries in a chain.

Introduction Chaining Open Addressing Hash Functions Summary

Chaining: Running Time III

Theorem

In a hash table in which collisions are resolved by chaining, a
search (successful or unsuccessful) takes Θ(1 + α) time on
average, under the assumption of independent uniform hashing.

Consequence

If the number of elements n is at most proportional to the number
of slots m (n ≤ cm for constant c > 0), then α ≤ cm/m ∈ O(1).
→ average running time of insertion, deletion and search is O(1).

Introduction Chaining Open Addressing Hash Functions Summary

Adapting the Size of the Hash Table

To maintain an upper bound on the load factor
(and thus constant average running times of operations),
we may need to increase the size of the table.

The change from the previous size m to size m′ requires an
adaptation of the hash function.

In contrast to a size change of an array (where we just move
every entry to the same index of the new memory range), we
need to rehash all elements and insert them anew.

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing

In contrast to chaining, with open addressing
the entries are stored in the hash table itself.

Hash table cannot hold more entries than size m
(load factor cannot exceed 1).

Size adaptation is analogous to chaining
(need to rehash and reinsert all entries).

To find a slot to insert an element, probe the hash table
for the key until you find an empty slot:

If first choice for key occupied, try the second choice,
if second choice for key occupied, try the third choice,
. . .

To search for an element with key k , probe the table for the
key until you find a slot that holds an element with key k .

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing

In contrast to chaining, with open addressing
the entries are stored in the hash table itself.

Hash table cannot hold more entries than size m
(load factor cannot exceed 1).

Size adaptation is analogous to chaining
(need to rehash and reinsert all entries).

To find a slot to insert an element, probe the hash table
for the key until you find an empty slot:

If first choice for key occupied, try the second choice,
if second choice for key occupied, try the third choice,
. . .

To search for an element with key k , probe the table for the
key until you find a slot that holds an element with key k .

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing

In contrast to chaining, with open addressing
the entries are stored in the hash table itself.

Hash table cannot hold more entries than size m
(load factor cannot exceed 1).

Size adaptation is analogous to chaining
(need to rehash and reinsert all entries).

To find a slot to insert an element, probe the hash table
for the key until you find an empty slot:

If first choice for key occupied, try the second choice,
if second choice for key occupied, try the third choice,
. . .

To search for an element with key k , probe the table for the
key until you find a slot that holds an element with key k .

Introduction Chaining Open Addressing Hash Functions Summary

Hash Functions for Open Addressing

The hash function contains the probe number as a second
input:

h : U × {0, . . . ,m − 1} → {0, . . . ,m − 1}

Probe sequence for key k:
⟨h(k , 0), h(k , 1), h(k, 2), . . . , h(k,m − 1)⟩.
For every key, the probe sequence must be
a permutation of {0, . . . ,m − 1}:
every position in the hash table included exactly once.

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Insertion and Search

Assumption: key(e) = e. Fix hash function h, hash table size m.

1 def hash_insert(T, k):

2 for i in range(m): # i = 0, 1, ..., m-1

3 pos = h(k, i)

4 if T[pos] is None: # position empty

5 T[pos] = k

6 return pos

7 raise Exception("hash table overflow")

1 def hash_search(T, k):

2 for i in range(m):

3 pos = h(k, i)

4 if T[pos] == k:

5 return pos

6 if T[pos] is None:

7 break

8 return None # does not contain k

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Insertion and Search

Assumption: key(e) = e. Fix hash function h, hash table size m.

1 def hash_insert(T, k):

2 for i in range(m): # i = 0, 1, ..., m-1

3 pos = h(k, i)

4 if T[pos] is None: # position empty

5 T[pos] = k

6 return pos

7 raise Exception("hash table overflow")

1 def hash_search(T, k):

2 for i in range(m):

3 pos = h(k, i)

4 if T[pos] == k:

5 return pos

6 if T[pos] is None:

7 break

8 return None # does not contain k

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Deletion?

When deleting the element, we may not simply set the slot to
None (Why?).

Can mark the slot as deleted.

Insertion treats it like an empty slot.
Search treats it as an occupied slot.

Disadvantage: Search times no longer depend on load factor
but can take longer.

If keys need to be deleted: consider chaining instead.

Linear probing (a special case of open addressing)
avoids need for deleted (later today).

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Deletion?

When deleting the element, we may not simply set the slot to
None (Why?).

Can mark the slot as deleted.

Insertion treats it like an empty slot.
Search treats it as an occupied slot.

Disadvantage: Search times no longer depend on load factor
but can take longer.

If keys need to be deleted: consider chaining instead.

Linear probing (a special case of open addressing)
avoids need for deleted (later today).

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Deletion?

When deleting the element, we may not simply set the slot to
None (Why?).

Can mark the slot as deleted.

Insertion treats it like an empty slot.
Search treats it as an occupied slot.

Disadvantage: Search times no longer depend on load factor
but can take longer.

If keys need to be deleted: consider chaining instead.

Linear probing (a special case of open addressing)
avoids need for deleted (later today).

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Running Time I

Assumptions for running time analysis:

α < m (at least one slot empty)
no deletions
independent uniform permutation hashing:
the probe sequence for a key is equally likely to be any
permutation of {0, . . . ,m − 1}.

Unsuccessful search: every probe but the last accesses an
occupied slot (not containing the search key), last slot is
empty.

Successful search: some probe in the probe sequence accesses
a slot with the searched key.

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Running Time II

Theorem

For a open-address hash table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful search is at most
1/(1− α), assuming independent uniform permutation hashing
and no deletions.

Intuition:

1/(1− α) = 1 + α+ α2 + α3 + . . .

First probe always occurs, with probability α the probed slot is
occupied, so a second probe occurs, . . .

Corollary

Under the same assumption as in the theorem, inserting an
element requires at most 1/(1− α) probes on average.

Introduction Chaining Open Addressing Hash Functions Summary

Open Addressing: Running Time III

Theorem

For a open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most 1

α loge
1

1−α ,
assuming independent uniform permutation hashing with no
deletions and assuming that each key in the table is equally likely
to be searched for.

Introduction Chaining Open Addressing Hash Functions Summary

Double Hashing

Double hashing uses two auxiliary hash functions
h1 : U → {0, . . . ,m − 1} and h2 : U → {0, . . . ,m − 1}.
Hash function h(k , i) = (h1(k) + i · h2(k)) mod m

Initial probe position h1(k) and step size h2(k) depend on k .

h2(k) must be relatively prime to m
(the only common divisor of h2(k) and m is 1).

For example:

m power of 2 and h(k) odd number, or
m prime and h(h) positive integer less than m.

Introduction Chaining Open Addressing Hash Functions Summary

Double Hashing

Double hashing uses two auxiliary hash functions
h1 : U → {0, . . . ,m − 1} and h2 : U → {0, . . . ,m − 1}.
Hash function h(k , i) = (h1(k) + i · h2(k)) mod m

Initial probe position h1(k) and step size h2(k) depend on k .

h2(k) must be relatively prime to m
(the only common divisor of h2(k) and m is 1).

For example:

m power of 2 and h(k) odd number, or
m prime and h(h) positive integer less than m.

Introduction Chaining Open Addressing Hash Functions Summary

Double Hashing: Example

m = 11, h1(k) = k mod 11, h2(k) = 1 + k mod 9

Insert k = 57.

57 mod 11 = 2
57 mod 9 = 3

145 192 391 73

Introduction Chaining Open Addressing Hash Functions Summary

Double Hashing: Example

m = 11, h1(k) = k mod 11, h2(k) = 1 + k mod 9

Insert k = 57.

57 mod 11 = 2
57 mod 9 = 3

145 192 391 73

Introduction Chaining Open Addressing Hash Functions Summary

Double Hashing: Example

m = 11, h1(k) = k mod 11, h2(k) = 1 + k mod 9

Insert k = 57.

57 mod 11 = 2
57 mod 9 = 3

145 192 391 73 57

Introduction Chaining Open Addressing Hash Functions Summary

Special Case: Linear Probing

Use hash function h1 : U → {0, . . . ,m − 1}
Probe sequence:
⟨h1(k), h1(k) + 1, . . . , h1(m − 1), h1(0), h1(1), . . . , h1(k)− 1)⟩
h(k , i) = (h1(k) + i) mod m

Why is this a special case of double hashing?

Introduction Chaining Open Addressing Hash Functions Summary

Special Case: Linear Probing

Use hash function h1 : U → {0, . . . ,m − 1}
Probe sequence:
⟨h1(k), h1(k) + 1, . . . , h1(m − 1), h1(0), h1(1), . . . , h1(k)− 1)⟩
h(k , i) = (h1(k) + i) mod m

Why is this a special case of double hashing?

Introduction Chaining Open Addressing Hash Functions Summary

Linear Probing: Deletion I

Use function g(k, q) = (q − h1(k)) mod m.

If h(k , i) = q then g(k , q) = i

Introduction Chaining Open Addressing Hash Functions Summary

Linear Probing: Deletion II

1 def linear_probing_hash_delete(T, q): # delete entry at position q

2 T[q] = None

3 pos = q

4

5 # search for a key that would have been inserted at position q

6 # instead of its current position if q had been free.

7 while True:

8 pos = (pos + 1) % m # next slot in linear probing

9 if T[pos] is None:

10 # there is no key that would have been inserted at q.

11 return

12 key = T[pos] # this could be such a key

13 if g(key,q) < g(key,pos):

14 # indeed, this key should be moved to q.

15 break

16 # otherwise continue with next position

17

18 T[q] = key # move key into slot p

19 linear_probing_hash_delete(T, pos) # now pos needs to be emptied

Introduction Chaining Open Addressing Hash Functions Summary

Linear Probing: (Dis-)Advantage

Disadvantage: Primary clustering

An empty slot occurring after i full slots gets filled next with
probability (i + 1)/m.

Linear probing has a tendency to build up long runs of
occupied slots (so-called clusters).

Running time of search depends on size of clusters.

Advantage: Data locality

Memory accessed by modern CPUs has a number of levels
(registers, cache, main memory, . . .).

For example, the cache always fetches entire cache blocks
from the main memory.

Linear probing mostly “reuses” the same fetched block,
avoiding frequent (slow) access to the main memory.

Introduction Chaining Open Addressing Hash Functions Summary

Hash Functions

Introduction Chaining Open Addressing Hash Functions Summary

Static Hashing: Division and Multiplication Method

For the moment, we consider keys that are non-negative integers
that fit in a machine word (32 or 64 bits).

Static hashing uses a single, fixed hash function.

Examples (m = hash table size):

Division method: h(k) = k mod m

Works well when m is a prime not too close to a power of 2.

Multiplication method: pick some A with 0 < A < 1. Then

h(k) = ⌊m(kA− ⌊kA⌋)⌋.

kA− ⌊kA⌋: fractional part of kA.
Works best if m − 2ℓ, where ℓ ≤ w , where w is the number of
bits in a machine word.

Introduction Chaining Open Addressing Hash Functions Summary

Static Hashing: Division and Multiplication Method

For the moment, we consider keys that are non-negative integers
that fit in a machine word (32 or 64 bits).

Static hashing uses a single, fixed hash function.

Examples (m = hash table size):

Division method: h(k) = k mod m

Works well when m is a prime not too close to a power of 2.

Multiplication method: pick some A with 0 < A < 1. Then

h(k) = ⌊m(kA− ⌊kA⌋)⌋.

kA− ⌊kA⌋: fractional part of kA.
Works best if m − 2ℓ, where ℓ ≤ w , where w is the number of
bits in a machine word.

Introduction Chaining Open Addressing Hash Functions Summary

Static Hashing: Multiply-shift Method

r1 r2

a = A2w

k

×

w bits

ha(k)

extract ℓ bits

m = 2ℓ for integer ℓ < w , where w is the number of bits in a
machine word.

For 0 < A < 1, the result of k · A22 is an integer with ≤ 2w
bits (= 2 words).

Use ℓ most significant bits of the low-order word of the
product as hash value.

Fast but no formal guarantees.

Introduction Chaining Open Addressing Hash Functions Summary

Random Hashing

For every static hash function, an adversary can choose a
sequence of keys that are all hashed to the same slot.

Random hashing chooses the hash function randomly and
independently of the keys that are going to be stored

The special case of universal hashing guarantees good average
performance, independent of the sequence of keys.

Introduction Chaining Open Addressing Hash Functions Summary

Random Hashing: Universal Hashing

A family H of hash functions mapping universe U into slots
{0, . . . ,m − 1} is universal if for each pair of distinct keys
k, k ′ ∈ U there are at most |H|/m hash functions h ∈ H such
that h(k) = h(k ′).

Universal hashing can be achieved in practise (e.g. using
multiply-shift).

With universal hashing and chaining, any sequence of s
insert, delete and search operations takes Θ(s) expected
time, if it starts from an empty hash table with m slots and
includes at most O(m) insert operations

Introduction Chaining Open Addressing Hash Functions Summary

Cryptographic Hashing

Cryptographic hash functions are complex pseudorandom
functions, designed for applications requiring properties
beyond those needed here.

Some CPUs contain specific instructions to support a fast
computation of some cryptographic functions.

A cryptographic hash function takes as input an arbitrary byte
string and returns a fixed-length output.

E.g. SHA-256 produces a 256-bit (32-byte) output for any
input.
We can use h(k) = SHA-256(k) mod m, or
create a family of such hash functions by prepending different
“salt” strings a to k .

Introduction Chaining Open Addressing Hash Functions Summary

Summary

Introduction Chaining Open Addressing Hash Functions Summary

Summary

Hash functions map the keys of the universe to the m possible
slots of the hash table.

Since there typically are more possible keys than slots,
collisions are unavoidable.

We deal with them by chaining and open addressing
(e.g. using linear probing).

Designing good hash functions is non-trivial and often uses a
random selection from a family of functions.

With a good hash function and load factor management,
insertion and (successful) search is possible in constant
amortized time on average (logarithmic in the worst case).

	Introduction
	

	Chaining
	

	Open Addressing
	

	Hash Functions
	

	Summary
	

