
Algorithms and Data Structures
B3. Heaps, Priority Queues and Heapsort

Gabriele Röger

University of Basel

April 4, 2024

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 1 / 37

Algorithms and Data Structures
April 4, 2024 — B3. Heaps, Priority Queues and Heapsort

B3.1 Introduction

B3.2 Heap

B3.3 Heapsort

B3.4 Priority Queue

B3.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 2 / 37

B3. Heaps, Priority Queues and Heapsort Introduction

B3.1 Introduction

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 3 / 37

B3. Heaps, Priority Queues and Heapsort Introduction

Our Plan for Today

▶ Data structure heap

▶ Algorithm heapsort that uses a heap.

▶ Abstract data type priority queue,
that can be implemented with a heap.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 4 / 37

B3. Heaps, Priority Queues and Heapsort Heap

B3.2 Heap

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 5 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Binary Trees

▶ Binary tree: each node has at most two successor nodes.

▶ We distinguish the left and the right child of a node.

▶ A single child can be the left or the right child.

▶ A nearly complete binary tree is completely filled on all levels
except possibly the lowest, which is filled from left to right.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 6 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Nearly Complete Binary Trees as Arrays

▶ Consider 1-indexed arrays.
▶ Every such array can be interpreted as a nearly complete

binary tree and vice versa.
▶ Assign numbers 1, 2, . . . to nodes in tree from root to leaves

and left to right on each level.
▶ The number is the index in the array.
▶ The left child of node i gets 2i and the right child 2i + 1.

R

1

O2

H4

D8 A 9

C5

K 3

B 6 I 7

1 2 3 4 5 6 7 8 9

R O K H C B I D A

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 7 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Functions

def left(i):

return 2 * i

def right(i):

return 2 * i + 1

def parent(i):

return i // 2

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 8 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Heap: Max-Heap

Definition: Max-Heap

A nearly complete binary tree is a max-heap if the key stored in
each node is greater or equal to the keys of each of its children.

R

O

H

D A

C

K

B I

The largest key in a max-heap is at the root.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 9 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Heap: Min-Heap

Definition: Min-Heap

A nearly complete binary tree is a min-heap if the key stored in
each node is smaller or equal to the keys of each of its children.

3

6

8

10 14

12

7

16 8

The smallest key in a min-heap is at the root.

We will focus on max-heaps. Min-heaps are implemented analogously.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 10 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Max-heaps: Operations

We will implement the following operations:

▶ build max heap transforms an array into a max-heap.

▶ max heap maximum returns the largest element.

▶ max heap extract max removes and returns the largest
element.

▶ max heap insert add an item to the heap.

We will use two helper functions that fix local violations of the
heap property:

▶ sink moves an element with a too small key downwards.

▶ swim moves an element with a too large key upwards.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 11 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Function: Sink

▶ Sink assumes that the left and right subtree of node i are
max-heaps but the key at i might be smaller than the keys at
2i or 2i + 1 (root of left and right sub-tree), violating the
heap property.

▶ Idea: Let the entry recursively “float down” into the subtree
with the larger key at its root.

In the book by Cormen et al. the function is called max heapify.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 12 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Example

R

Bi

H

D A

E

C

K

B I

R

H

Bi

D A

E

C

K

B I

R

H

D

Bi A

E

C

K

B I

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 13 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Jupyter Notebook

Jupyter notebook: heaps.ipynb

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 14 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Implementation

def sink(heap, i, heap_size=None):

if heap_size is None:

heap_size = len(heap) - 1

l = left(i)

r = right(i)

if l <= heap_size and heap[l] > heap[i]:

largest = l

else:

largest = i

if r <= heap_size and heap[r] > heap[largest]:

largest = r

if largest != i:

heap[i], heap[largest] = heap[largest], heap[i]

sink(heap, largest, heap_size)

Parameter heap size can be used to exclude some entries at the
end of the array from the heap (these positions will be ignored).

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 15 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Running time

Simple insight:

▶ Let h be the height of the subtree rooted at position i .

▶ Then the worst-case running time of sink is O(h).

Full story:

▶ Let n be the number of nodes of the subtree rooted at
position i .

▶ Determining the final value of largest is Θ(1).

▶ Each subtree has size at most 2n/3, so for the worst-case
running time T of sink, we have

T (n) ≤ T (2n/3) + Θ(1).

▶ By master theorem (case 2), T (n) ∈ O(log2 n).

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 16 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Function Swim

▶ Sink lets an entry with a too small key recursively “float
down” into the subtree (a heap) with the larger key at its root.

▶ We now consider the counterpart swim: let an entry with a
too large key float up in a tree that is otherwise a heap.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 17 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Swim: Example

R

H

D

B Mi

E

C

K

B I

R

H

Mi

B D

E

C

K

B I

R

Mi

H

B D

E

C

K

B I

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 18 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Swim: Implementation

def swim(heap, i):

parent_index = parent(i)

as long as i is not the root and the parent

of i has a smaller key than i

while i > 1 and heap[parent_index] < heap[i]:

swap the entries of nodes i and its parent

heap[parent_index], heap[i] = heap[i], heap[parent_index]

continue floating up the entry from the parent

i = parent_index

parent_index = parent(i)

Running time: O(log2 n)
(height of a nearly complete binary tree with n nodes is ⌊log2 n⌋)

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 19 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Build max heap

We can use sink to transform any array into a max-heap in a
bottom-up fashion, processing all nodes from the second-lowest
layer up to the root.

def build_max_heap(array):

heap_size = len(array) - 1

all elements from positions heap_size//2 + 1

to heap_size are leaves of the tree.

for i in range(heap_size//2, 0, -1):

sink(array, i, heap_size)

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 20 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Running Time of build max heap

▶ Heap with n elements has height ⌊log2 n⌋.
▶ There are at most

⌈
n

2h+1

⌉
nodes rooting subtrees of height h.

▶ The call of sink for each such node is O(h).
▶ Use c for the constant hidden in the asymptotic notation.

3T (n) ≤
⌊log2 n⌋∑
h=0

⌈ n

2h+1

⌉
ch

≤
⌊log2 n⌋∑
h=0

n

2h
ch = nc

⌊log2 n⌋∑
h=0

h

2h

≤ nc
∞∑
h=0

h

2h
≤ nc

1/2

(1− 1/2)2
∈ O(n)

(cf. Cormen et al., p. 169 for reasons for inequalities; you may ignore the math.)

We can create a heap in linear time in the number of entries.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 21 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Determining the Maximum Element

In a max-heap, it is trivial to determine the largest element:
it is the element at the root.

def max_heap_maximum(heap, heap_size):

if heap_size < 1:

raise Exception("empty heap")

else:

return heap[1]

Running time: Θ(1)

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 22 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Extracting the Maximum Element

If we remove the largest element, we fill the position with the
bottom-right element and restore the heap property with sink on
position 1.

def max_heap_extract_max(heap, heap_size):

maximum = max_heap_maximum(heap, heap_size)

heap[1] = heap[heap_size]

sink(heap, 1, heap_size)

return maximum

the externally handled heap_size

needs to be decremented

Running time: O(log2 n) (with n size of the heap)

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 23 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Extracting the Maximum Element: Example

R

H

D

B A

E

C

K

B I

C

H

D

B A

E

K

B I

Let the element sink from the root to a suitable node:

K

H

D

B A

E

C

B I

K

H

D

B A

E

I

B C

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 24 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Inserting an Element

We insert an element as a new leaf and
let it swim to restore the heap property:

def max_heap_insert(heap, item, heap_size):

if heap_size < len(heap) - 1:

we still have space in the array

heap[heap_size + 1] = item

else:

assert heap_size == len(heap) - 1

heap.append(item)

swim(heap, heap_size + 1)

Running time: O(log2 n) (with n size of the heap)
Only amortized if we are precise wrt. the append operation.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 25 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Inserting an Element: Example

R

H

D

B A

E

C

K

B I

R

H

D

B A

E

C L

K

B I

Let the element swim from the leaf to a suitable node:

R

H

D

B A

L

C E

K

B I

R

L

D

B A

H

C E

K

B I

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 26 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

B3.3 Heapsort

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 27 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Heapsort

▶ Basic idea as in selection sort but from right to left:
Successively swap the largest element to the end of the
non-sorted range.

▶ We can represent the heap directly in the input sequence,
so that heapsort only needs constant additional memory.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 28 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Jupyter Notebook

Jupyter notebook: heaps.ipynb

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 29 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Heapsort

assumes that array[0] is not part of the input sequence

def heapsort(array):

build_max_heap(array)

i ranges from last position down to position 1

for i in range(len(array) - 1, 0, -1):

swap largest element from heap to position i

array[i], array[1] = array[1], array[i]

restore heap_property for heap (in range 1,...,i-1)

sink(array, 1, i-1)

▶ Building the heap takes linear time in n (length of array).

▶ We have a linear number of iterations of the for loop,
each running in O(log2 n).

▶ Overall running time O(n log2 n).

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 30 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Remarks

▶ Heapsort is asymptotically optimal wrt. running time and
memory requirements:
▶ Running time O(n log n).
▶ Additional memory O(1) (in-place)

▶ Practical disadvantage: Does not efficiently use the CPU
cache because of poor locality of reference (swapping
elements that do not have close storage locations)

▶ As an in-place approach still relevant,
e.g. for embedded systems.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 31 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

B3.4 Priority Queue

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 32 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

ADT Priority Queue

A priority queue is an ADT for maintaining a collection of
elements, each with an associated key.

A max-priority queue supports the following operations:

▶ insert(x, k) inserts element x with key k.

▶ maximum() returns the element with the largest key.

▶ extract max() returns and removes the element with the
largest key.

Min-priority queues analogously prioritize elements with small keys.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 33 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

Priority Queues: Applications

▶ Protocols for local area networks use them to ensure that
high-priority applications experience lower latency than other
applications.

▶ Prim’s algorithm for minimum spanning trees and Dijkstra’s
algorithm for finding shortest paths in graphs use them for the
processing order of the nodes of the graph (Ch. C4/C6).

▶ Huffman coding for lossless data compression uses them to
prioritize nodes with high probability.

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 34 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

Jupyter Notebook

We can implement a priority queue with a heap:

Jupyter notebook: heaps.ipynb

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 35 / 37

B3. Heaps, Priority Queues and Heapsort Summary

B3.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 36 / 37

B3. Heaps, Priority Queues and Heapsort Summary

Summary

▶ (Max-)Heaps support the following operations:
▶ Build heap from array: O(n)
▶ Return largest element: O(1)
▶ Remove largest element: O(log n)
▶ Insert element: O(log n)

▶ Heapsort uses a heap to sort an array.
▶ Can maintain the heap in the space of its input array.
▶ In-place sorting algorithm.

▶ A priority queue is an abstract data type.
▶ Can insert items with a priority (= key).
▶ Can obtain the item with the highest priority.
▶ Implementation with heaps

(or AVL trees or Fibonacchi heaps; not covered in this course).

G. Röger (University of Basel) Algorithms and Data Structures April 4, 2024 37 / 37

	Introduction
	

	Heap
	

	Heapsort
	

	Priority Queue
	

	Summary
	

