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Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

m User perspective: How can | use the data type?

m In contrast to data structures, not specifying the concrete
representation of the data.
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Advantages of Abstract Data Types

m User codes against an interface.
m The underlying data structure (representation) is
hidden /encapsulated.
m Representation can be replaced at any time.
m Separating two aspects:

© What is the data type doing (interface)?
@ How is this achieved (internal structure)?
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Advantages of Abstract Data Types

m User codes against an interface.
m The underlying data structure (representation) is
hidden /encapsulated.
m Representation can be replaced at any time.
m Separating two aspects:

© What is the data type doing (interface)?
@ How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible. J
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Abstract Data Types and Classes

m In object-oriented languages, abstract data types are often
implemented as interfaces.

m For example, lists in Java:

interface List<E>:
E get(int index);
void add(E element);

‘ void add(int pos, E element);
java.util.LinkedList

java.util.ArrayList
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Today: Stacks and Queues

Stack (of plates) Queue (of persons)
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Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

m push: puts an item on top Pm Pop
of the stack

m pop: removes the item at the
top of the stack

A

Both operations should take constant time.



Application: Call Stack

The call stack stores information when running subroutines of a

computer program.

— where to resume once the subroutine has terminated
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Jupyter Notebook
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Jupyter notebook: fundamental-adts.ipynb
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Stack: Possible Implementation with Linked Lists

class Stack:
def __init__(self):
self.list = LinkedList()

def push(self, item):
self.list.prepend(item)

def pop(self):
if self.list.is_empty():
raise Exception("popping from empty stack")
else:
return self.list.remove_first()
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Questions
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Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

m enqueue: adds an item to the
. [
tail of the queue
) Dequeue Enqueue
m dequeue: removes the item at K >
the head of the queue [ [

Both operations should take constant time.
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Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.
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Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start

node. :
Starting from node 5, any of the

following visitation orders would be fine:

Q‘Q"‘g’e 524130
542130
@‘g 524310
542310
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Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start

node. :
Starting from node 5, any of the

following visitation orders would be fine:

Q‘G"‘g’e 524130
542130
@‘g 524310
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Implementation with queue in Jupyter notebook
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Jupyter Notebook
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Jupyter notebook: fundamental-adts.ipynb
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Queue: Possible Implementation with Doubly Linked Lists

class Queue:
def __init__(self):
self.list = DoublyLinkedList()

def enqueue(self, item):
self.list.append(item)

def dequeue(self):
if self.list.is_empty():
raise Exception("dequeuing from empty queue")
else:
return self.list.remove_first()
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Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.
m appendleft: adds an item to the left side of the deque.
m pop: removes the item at the right end of the deque.
|

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.
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Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.
m appendleft: adds an item to the left side of the deque.
m pop: removes the item at the right end of the deque.
|

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.
All operations should take constant time.

How would you implement a deque?
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Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.
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Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

m Stack: follows last-in-first-out (LIFO) principle.
m Queue: follows first-in-first-out (FIFO) principle.

m Deque: generalizes stack and queue.
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Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.
Queue: follows first-in-first-out (FIFO) principle.
Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.
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Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.
Queue: follows first-in-first-out (FIFO) principle.
Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

— Preferably code against an ADT /interface.
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