Algorithms and Data Structures
B2. Abstract Data Types: Stacks & Queues

Gabriele Roger
University of Basel

April 3, 2024

Abstract Data Type
©0000

Abstract Data Type

Abstract Data Type Stack ” Deque Summar

[e] le]e]e}

Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

m User perspective: How can | use the data type?

m In contrast to data structures, not specifying the concrete
representation of the data.

Abstract Data Type

00800

Advantages of Abstract Data Types

m User codes against an interface.
m The underlying data structure (representation) is
hidden /encapsulated.
m Representation can be replaced at any time.
m Separating two aspects:

© What is the data type doing (interface)?
@ How is this achieved (internal structure)?

Abstract Data Type

00800

Advantages of Abstract Data Types

m User codes against an interface.
m The underlying data structure (representation) is
hidden /encapsulated.
m Representation can be replaced at any time.
m Separating two aspects:

© What is the data type doing (interface)?
@ How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible. J

Abstract Data Type

[e]e]e] e}

Abstract Data Types and Classes

m In object-oriented languages, abstract data types are often
implemented as interfaces.

m For example, lists in Java:

interface List<E>:
E get(int index);
void add(E element);

‘ void add(int pos, E element);
java.util.LinkedList

java.util.ArrayList

Abstract Data Type
0000e

Today: Stacks and Queues

Stack (of plates) Queue (of persons)

Stack
©00000

Stack

Stack
000000

Deque Summar

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

m push: puts an item on top Pm Pop
of the stack

m pop: removes the item at the
top of the stack

A

Both operations should take constant time.

Application: Call Stack

The call stack stores information when running subroutines of a

computer program.

— where to resume once the subroutine has terminated

Flle EdIt Selection View Go Run Terminal Help

/O > array: [0, 3, 8, 4, 8, 2] 2
. R

&
&

)

S

home > roeger > rep

~ waTcH

 caLLsTAck [—
sort_aux merge_sortpy (1%
sort_aux merge sortpy @
sort merge,

<nodule> merge,

& merge.

y %

5 > teach!

def merge(array,
i=1o

> algorithmen-datenstruk
mp, lo, mid, hi)

j=mid 1

Tor k in range(lo, hi + 1
it
tplk] = array[i]
1=
else

tmplk) = array(j]
Jea
for k in Tange(lo, hi + 1)
array[k = taprk]
def sort(array)
tmp = (2] * len(array)

sort_aux(array, tmp, 0, len(array) -

def sort_aux(array, tmp, lo, hi)
if hi <= lo:
return
mid = 1o + (hi - o) // 2
sort_aux(array, tmp, lo, mid)
sort_aux(array, tmp, mid + 1, hi)
nexge(array, tnp, lo, mid, hi)

array = [5,3,2,4,8,2]
sort(array)
print (array)

3> hior (i< mid and array[i] <= array(j)):

1

Stack
000000

Jupyter Notebook

@
_
Jupyter
o

Jupyter notebook: fundamental-adts.ipynb

Stack
000000

Stack: Possible Implementation with Linked Lists

class Stack:
def __init__(self):
self.list = LinkedList()

def push(self, item):
self.list.prepend(item)

def pop(self):
if self.list.is_empty():
raise Exception("popping from empty stack")
else:
return self.list.remove_first()

Stack
00000@

Questions

g
°? Questions?

Queue

Queue Summar

O@0000

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

m enqueue: adds an item to the
. [
tail of the queue
) Dequeue Enqueue
m dequeue: removes the item at K >
the head of the queue [[

Both operations should take constant time.

Queue Deque Summar
000000 00000 oo 00

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

Queue Summary

[e]e] le]e]e]

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start

node. :
Starting from node 5, any of the

following visitation orders would be fine:

Q‘Q"‘g’e 524130
542130
@‘g 524310
542310

Queue Summary

[e]e] le]e]e]

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start

node. :
Starting from node 5, any of the

following visitation orders would be fine:

Q‘G"‘g’e 524130
542130
@‘g 524310

542310

Implementation with queue in Jupyter notebook

Queue
000800

Jupyter Notebook

@
_
Jupyter
o

Jupyter notebook: fundamental-adts.ipynb

Queue
000000

Queue: Possible Implementation with Doubly Linked Lists

class Queue:
def __init__(self):
self.list = DoublyLinkedList()

def enqueue(self, item):
self.list.append(item)

def dequeue(self):
if self.list.is_empty():
raise Exception("dequeuing from empty queue")
else:
return self.list.remove_first()

Queue
00000e

Questions

g
°? Questions?

Deque
®0

Deque

Summary

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.
m appendleft: adds an item to the left side of the deque.
m pop: removes the item at the right end of the deque.
|

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.

Summary

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.
m appendleft: adds an item to the left side of the deque.
m pop: removes the item at the right end of the deque.
|

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.
All operations should take constant time.

How would you implement a deque?

Summan
0

Summary

Deque Summary
0o o

Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Summary
o

Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

m Stack: follows last-in-first-out (LIFO) principle.
m Queue: follows first-in-first-out (FIFO) principle.

m Deque: generalizes stack and queue.

S
o

ummary
°

Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.
Queue: follows first-in-first-out (FIFO) principle.
Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

Queue

Summary
oe

Summary

m Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.
Queue: follows first-in-first-out (FIFO) principle.
Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

— Preferably code against an ADT /interface.

	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	

