
Algorithms and Data Structures
B2. Abstract Data Types: Stacks & Queues

Gabriele Röger

University of Basel

April 3, 2024

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 1 / 21



Algorithms and Data Structures
April 3, 2024 — B2. Abstract Data Types: Stacks & Queues

B2.1 Abstract Data Type

B2.2 Stack

B2.3 Queue

B2.4 Deque

B2.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 2 / 21



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

B2.1 Abstract Data Type

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 3 / 21



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

▶ User perspective: How can I use the data type?

▶ In contrast to data structures, not specifying the concrete
representation of the data.

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 4 / 21



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Advantages of Abstract Data Types

▶ User codes against an interface.
▶ The underlying data structure (representation) is

hidden/encapsulated.
▶ Representation can be replaced at any time.

▶ Separating two aspects:
1 What is the data type doing (interface)?
2 How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 5 / 21



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Types and Classes

▶ In object-oriented languages, abstract data types are often
implemented as interfaces.

▶ For example, lists in Java:

interface List <E>:

E get(int index );

void add(E element );

void add(int pos , E element );

...

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 6 / 21



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Today: Stacks and Queues

Stack (of plates) Queue (of persons)

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 7 / 21



B2. Abstract Data Types: Stacks & Queues Stack

B2.2 Stack

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 8 / 21



B2. Abstract Data Types: Stacks & Queues Stack

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

▶ push: puts an item on top
of the stack

▶ pop: removes the item at the
top of the stack

PopPush

Both operations should take constant time.

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 9 / 21



B2. Abstract Data Types: Stacks & Queues Stack

Application: Call Stack

The call stack stores information when running subroutines of a
computer program.
→ where to resume once the subroutine has terminated

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 10 / 21



B2. Abstract Data Types: Stacks & Queues Stack

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 11 / 21



B2. Abstract Data Types: Stacks & Queues Stack

Stack: Possible Implementation with Linked Lists

class Stack:

def __init__(self):

self.list = LinkedList()

def push(self, item):

self.list.prepend(item)

def pop(self):

if self.list.is_empty():

raise Exception("popping from empty stack")

else:

return self.list.remove_first()

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 12 / 21



B2. Abstract Data Types: Stacks & Queues Queue

B2.3 Queue

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 13 / 21



B2. Abstract Data Types: Stacks & Queues Queue

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

▶ enqueue: adds an item to the
tail of the queue

▶ dequeue: removes the item at
the head of the queue

EnqueueDequeue

Both operations should take constant time.

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 14 / 21



B2. Abstract Data Types: Stacks & Queues Queue

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

0

1

3

2

5

4

Starting from node 5, any of the
following visitation orders would be fine:

▶ 5 2 4 1 3 0

▶ 5 4 2 1 3 0

▶ 5 2 4 3 1 0

▶ 5 4 2 3 1 0

Implementation with queue in Jupyter notebook

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 15 / 21



B2. Abstract Data Types: Stacks & Queues Queue

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 16 / 21



B2. Abstract Data Types: Stacks & Queues Queue

Queue: Possible Implementation with Doubly Linked Lists

class Queue:

def __init__(self):

self.list = DoublyLinkedList()

def enqueue(self, item):

self.list.append(item)

def dequeue(self):

if self.list.is_empty():

raise Exception("dequeuing from empty queue")

else:

return self.list.remove_first()

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 17 / 21



B2. Abstract Data Types: Stacks & Queues Deque

B2.4 Deque

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 18 / 21



B2. Abstract Data Types: Stacks & Queues Deque

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

▶ append: adds an item to the right side of the deque.

▶ appendleft: adds an item to the left side of the deque.

▶ pop: removes the item at the right end of the deque.

▶ popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.

How would you implement a deque?

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 19 / 21



B2. Abstract Data Types: Stacks & Queues Summary

B2.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 20 / 21



B2. Abstract Data Types: Stacks & Queues Summary

Summary

▶ Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

▶ Stack: follows last-in-first-out (LIFO) principle.

▶ Queue: follows first-in-first-out (FIFO) principle.

▶ Deque: generalizes stack and queue.

▶ All: in principle just lists with limited functionality.

▶ Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.

G. Röger (University of Basel) Algorithms and Data Structures April 3, 2024 21 / 21


	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	


