Algorithms and Data Structures
B1. Arrays and Linked Lists

Gabriele Roger

University of Basel

March 27/April 3, 2024

Data Structures
©00000

Data Structures

Data Structures
000000

Content of the Course

— sorting

complexity
analysis

- searching

graph
algorithms

— concepts

Data Structures

[e]e] lele]e}

Data Structures

m Programming goes beyond
writing algorithms.
m Organisation of data is
central.
m Elegant data structures lead
to elegant code.
m Programmers. ..

m need a catalogue of data
structures, and

m need to know their
characteristics.

Tucid, sysmmatic,
and panorrating
troamment of basic
and dynomic datn
structures, seeting,
recursive aigecithms,
language structures,
ond compiling

PRENTICE-HALL
SERIES IN
LTOMATIC

COMPUTATION

Data Structures
00000

Overview

problems

sort data
search data
analyze structure
compress data

abstraction

algorithms " data structures

divide & conquer lists
greedy trees
randomization graphs

properties

runtime complexity memory complexity
correctness optimality

solutions and applications

Data Structures \ Summar

0000e0

Data Structures

Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.

Linus Torwalds

Data Structures

O0000e

Data Structures

Show me your algorithm and conceal your data structures,
and | shall continue to be mystified.

Show me your data structures, and | won't usually need your
algorithm; it will be obvious.

Fred Brooks (paraphrased)J

Arrays
©000000000000000

Arrays

Structures Arrays
0®00000000000000

Data Structure: Array

m Arrays are one of the fundamental data structures, that can
be found in (almost) every programming language.

m An array stores a sequence of elements (of the same memory
size) as a contiguous sequence of bytes in memory.

m The number of elements is fixed.

m We can access elements by their index.

In Java:

byte[] myByteArray = new byte[100];
char[] myCharArray = new char[50];

Arrays

0O0@0000000000000

Example: char Array

One char occupies 1 byte.

The first element is at memory address 2000
(7DO0 in hexadecimal).

The first element has index O.
Then the element with index i is at address 2000 + i.

Memory
address 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 0x7D7 0x7D8 0x7D9 0x7DA

h e | [o _ w o) r | d

Index

\trumw Arrays

Y
0008000000000 000

Array Position of /-th Element Easy to Compute

In general:

m First position typically indexed with 0 or 1.
In the following, s for the index of the first element.

m Suppose the array starts at memory address a and each array
element occupies b bytes.

m Then the element with index i occupies bytes a + b(i — s) to
a+b(i—s+1)—1.

With 32-bit integers (4 byte)
Memory
address 2000 2001 2002 2003 2004 2005 2006 2007
(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 Ox7D7
I I I I I I
42 23
| | | | | |

Index
0 1

Arrays Summar

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.

Structures Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i
set (i, x) — write object x to position i
length() — return length of the array
find(x) — return index of element x or None if not included.

Structures Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i ~~ ©(1)
set (i, x) — write object x to position i
length() — return length of the array
find(x) — return index of element x or None if not included.

Structures Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i ~~ ©(1)
set(i, x) — write object x to position i ~~ ©(1)
length() — return length of the array
find(x) — return index of element x or None if not included.

Structures Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i ~~ ©(1)
set (i, x) — write object x to position i ~» O(1)
length() — return length of the array ~~ O(1)
find(x) — return index of element x or None if not included.

Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores

the size of the array (number of elements) and
the address of the start of the allocated memory.

m What is the running time of the following operations
(relative to the size n of the array)?

get (i) — return element at position 1 ~ O(1)

set (i, x) — write object x to position i ~» O(1)

length() — return length of the array ~~ O(1)

find(x) — return index of element x or None if not included.
~> iterates over the array and stops if element found.

~~ Best case ©(1), Avg. and worst case ©(n)

Structures

Arrays
0000®00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores

the size of the array (number of elements) and
the address of the start of the allocated memory.

m What is the running time of the following operations
(relative to the size n of the array)?

get (i) — return element at position 1 ~ O(1)

set (i, x) — write object x to position i ~» O(1)

length() — return length of the array ~~ O(1)

find(x) — return index of element x or None if not included.
~> iterates over the array and stops if element found.

~~ Best case ©(1), Avg. and worst case ©(n)

m What is the memory complexity?

Arrays

O000@00000000000

Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
m get(i) — return element at position i ~~ ©(1)
m set(i, x) — write object x to position i ~» ©(1)
m length() — return length of the array ~~ ©(1)
m find(x) - return index of element x or None if not included.
~> iterates over the array and stops if element found.
~~ Best case ©(1), Avg. and worst case ©(n)

m What is the memory complexity?

Observation

—

Complexity is direct consequence of data representation.

Arrays
00000@0000000000

Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]

Da uctures Arrays Summar

0000080000000 000

Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.

Data Structures Arrays Summar
00000@0000000000 0000000 00

Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.
m Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)

Data Structures Arrays Summar
00000@0000000000 0000000 00

Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.
m Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)
— dynamic array

Arrays
000000@000000000

Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

m Need arrays that can grow dynamically.

m Runtime complexity of previous operations should be
preserved.

Structures Arrays

O00000@000000000

Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

m Need arrays that can grow dynamically.

m Runtime complexity of previous operations should be
preserved.

Additional operations:
m append(x) (or push) — append element x at the end.
m insert(i, x) — insert element x at position i.
m pop() - remove the last element.

m remove (i) - remove the element at position i.

ictures Arrays Link Summar
0000000e00000000 000)0000 00

Changing the Array Size: Naive Method

m append (and insert) increase the size of the array.

m pop decreases the size.
m Naive method:

m Allocate new memory range that is one element larger/smaller.
m Move all (but the potentially popped) element over.

Arrays Linke
0000000e00000000 000

Changing the Array Size: Naive Method

m append (and insert) increase the size of the array.

B pop decreases the size.
m Naive method:

m Allocate new memory range that is one element larger/smaller.
m Move all (but the potentially popped) element over.

With this approach, these operations would take linear time
in the current size of the array!

ictures Arrays Link Summar
00000000e0000000 000)0000 00

Better Approach: Overallocate Memory

m Allocate more memory than needed for the current array size.
m Distinguish
m capacity = number of elements that fit in the allocated space.
B size = number of currently contained elements.

Structures Arrays
)OO 000000000 e000000

Better Approach: Append/Insert

Append
m If capacity > size:
m Write the new element to position size and increment size.
m Otherwise (capacity = size):
m Allocate new memory that is larger than necessary
(e.g. twice the previous capacity).

m Copy all elements to the new memory (release the old one).
m Update the capacity and continue as in case capacity > size.

Insert at pos /: Analogously but move all elements at positions i to
size-1 one position to the right before writing the new element to J.

Structures Arrays
0000000000e00000

Better Approach: Pop/Remove

m If capacity much too large (e.g. capacity > 4 - size),
move all elements into new smaller memory range
(e.g. with half the previous capacity)
m Pop: remove element at position size - 1 and decrement size.

m Remove: remove element at position / and move all elements
right of / one position to the left, decrepement size.

ructures Arrays
o} 00000000000 e0000

Summary

Amortized Analysis

m Worst-case analysis often pessimistic: append takes linear
time if new memory allocated but in a sequence of append
operations, this will happen rarely.

m Amortized analysis determines the average cost of an
operation over an entire sequence of operations.

m Don't confuse this with an average-case analysis.

m Different methods

m Aggregate analysis
m Accounting method < now
m Potential method

Structures Arrays
000000000000e000

Accounting Method

Assign charges to operations.

Some operations charged more or less than they actually cost.
If charged more: save difference as credit

If charged less: use up some credit to pay for the difference.

Credit must be non-negative all the time.

Then the total amortized cost is always an upper bound on
the actual total costs so far.

Arrays

0000000000000 e00

Accountlng Method: Append |

m Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

m Append with resize: linear cost (1 for every element).

m If the append element gets position 2/ (i € Nso),
m we first allocate overall space for 2/*1 elements, and
m move all 2' — 1 existing elements to the new space.

Structures Arrays
[e]e) 0000000000000 e00

Accounting Method: Append |

m Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

m Append with resize: linear cost (1 for every element).
m If the append element gets position 2/ (i € Nso),
= we first allocate overall space for 2*! elements, and
m move all 2' — 1 existing elements to the new space.
m Starting from an empty array executing a sequence of append
operations, we observe cost sequence
1,1,3,1,5,1,1,1,9,1,1,1,1,1,1, 1,17, 1 ...

Arrays

Summary
0000000000000 0e0 00

Accounting Method: Append I

Charge cost 3 for every append operation.

size (after append) capacity charge cost credit

1 2 3 1 2
2 2 3 1 4
3 4 3 3 4
4 4 3 1 6
5 8 3 5 4
6 8 3 1 6
7 8 3 1 8
8 8 3 1 10
9 16 3 9 4
10 16 3 1 6

Charging 3 per operation covers all “running time costs”.
— Append has constant amortized running time.

Data Structures Arrays

Summary
0000000000000 00e [e]e)

Worst-Case Running Time Array

Operation Array

Access element by position 0(1)
Prepend/remove first element ~ O(n)
Append O(1) (amortized)
Remove last element O(1) (amortized)

Insert, remove from the middle O(n)
Traverse all elements O(n)

Linked Lists
©000000000000000

Linked Lists

Linked Lists

O@00000000000000

Motivation

m Arrays need a large continuous block of memory.

m Inserting elements at arbitrary positions is expensive.

Alternative that allows us to distribute the elements in memory?)

Linked Lists

00@0000000000000

Question?

m How can we order elements that are distributed in memory?

not

Linked Lists

00@0000000000000

Question?

m How can we order elements that are distributed in memory?

first
N - not

Linked Lists

000@000000000000

Linked Lists

m Every node stores its entry as well as a reference (pointer) to
its successor.

m Need special value for the next pointer of the last element.
m ...or a reference to the last element.

(last)

'
'

. o Item1 A ltem2 | o L ~Jitemn] ~end
first - next next next next |~

Linked Lists
0000®00000000000

Jupyter Notebook

@
_
Jupyter
o

Jupyter notebook: linked lists.ipynb

Linked Lists
00000@0000000000

Implementation: Node

1 class Node:

2 def __init__(self, item, next=None):
3 self.item = item

4 self .next = next

Linked Lists
000000®000000000

Implementation: List (without last reference)

class LinkedList:
def __init__(self):
self.first = None

1
2
3
4
5 # prepend item at the front of the list
6 def prepend(self, item):

7 new_node = Node(item, self.first)

8 self.first = new_node

9

10 ... # other methods added to nmotebook after lecture

Linked Lists
0000000e00000000

Worst-Case Running Time Array / Linked List

Operation Array Linked List
Prepend/remove first element ~ O(n) 0o(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle ~ O(n) O(n)
Traverse all elements O(n) O(n)

Find an element O(n) O(n)
Access element by position 0(1) -

What running times could we improve if we also maintained a
pointer to the last element of the linked list?

Linked Lists
0000000e00000000

Worst-Case Running Time Array / Linked List

Operation Array Linked List
Prepend/remove first element ~ O(n) 0o(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle ~ O(n) O(n)
Traverse all elements O(n) O(n)

Find an element O(n) O(n)
Access element by position 0(1) -

What running times could we improve if we also maintained a
pointer to the last element of the linked list?

Take-home Message
m Different data structures have different trade-offs.

ictures \ Linked Lists Summar

Doubly Linked Lists

m Idea: Do not only store a reference to the successor but also
to the predecessor.

m Renders appending at/removal from end constant time.

first last

\ ltem 1 Item 2 ltem 3 /
next >< next >< next
/ prev prev prev \

None None

Linked Lists
000000000e000000

Jupyter Notebook

@
N
Jupyter
o

Jupyter notebook: doubly_linked lists.ipynb

Linked Lists
0000000000e00000

Doubly Linked Lists: Implementation

1 class Node:

2 def __init__(self, item, next=None, prev=None):
3 self.item = item

4 self .next = next

5 self.prev = prev

6

7 class DoublyLinkedList:

8 def __init__(self):

9 self.first = None

10 self.last = None

11

12 def is_empty(self):

13 return self.first is None
14

15 # other methods on next slides

Linked Lists Summar

00000000000 e0000

Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

\ ltem 1 ltem 2 | ltem 3
next >< next >< next
/ prev prev prev

None None

Linked Lists Summar

00000000000 e0000

Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 ltem 2 | ltem 3
next next >< next >< next
prev / prev prev prev

None None None

Linked Lists Summar

00000000000 e0000

Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 ltem 2 | ltem 3
next next >< next >< next
prev prev prev prev

None None

Linked Lists Summar

00000000000 e0000

Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 Item 2 | ltem 3 /
next >< next >< next >< next
prev prev prev prev

None None

Linked Lists
000000000000e000

Doubly Linked Lists: append

24 def append(self, item):

25 if self.is_empty():

26 self.first = Node(item)

27 self.last = self.first

28 else:

29 node = Node(item, None, self.last)
30 self.last.next = node

31 self.last = node

Linked Lists
0000000000000e00

Doubly Linked Lists: remove_first

33 def remove_first(self):

34 if self.is_empty():

35 raise Exception("removing from empty list")
36 item = self.first.item

37 self . first = self.first.next

38 if self.first is not None:

39 self.first.prev = None

40 else:

41 self.last = None

42 return item

Linked Lists Summar

000000000000 00e0

Doubly Linked Lists: remove_last

With doubly linked lists, removing the last element is analogous to
removing the first element:

44 def remove_last(self):

45 if self.is_empty():

46 raise Exception("removing from empty list")
47 item = self.last.item

48 self.last = self.last.prev

49 if self.last is not None:

50 self.last.next = None

51 else:

52 self.first = None

53 return item

L) m \tru ture: Arrays Linked Lists %umnm;

0000000000000 00e

Worst-Case Runnlng Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element O(n) 0o(1)

Append O(1) (amort.) O(1)

Remove last element O(1) (amort.) O(1)

Insert, remove in the middle ~ O(n) O(n)/O(1)*
Traverse all elements O(n) O(n)

Find an element O(n) O(n)

Access element by position Oo(1) —

* constant, if node at the position is parameter

Linked Lists %umnmy

0000000000000 00e

Worst-Case Runnlng Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element O(n) 0o(1)

Append O(1) (amort.) O(1)

Remove last element O(1) (amort.) O(1)

Insert, remove in the middle ~ O(n) O(n)/O(1)*
Traverse all elements O(n) O(n)

Find an element O(n) O(n)

Access element by position Oo(1) —

* constant, if node at the position is parameter

Take-home Message

Compared to singly linked lists, doubly linked lists need a linear
amount of additional memory (for the prev references), but
provide better running times for operations at the end of the list.

Summarn
0

Summary

Structures

S
o

ummary
°

Summary

m An amortized analysis determines the average cost of an
operation over an entire sequence of operations.
m Arrays and linked lists store sequences of items.

m Arrays store items in a continuous space and can efficiently
access an item by index.

m Linked lists store items in nodes with a reference to the next
node (doubly linked lists: also to previous node).

	Data Structures
	

	Arrays
	

	Linked Lists
	

	Summary
	

