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Data Structures

m Programming goes beyond
writing algorithms.
m Organisation of data is
central.
m Elegant data structures lead
to elegant code.
m Programmers. ..

m need a catalogue of data
structures, and

m need to know their
characteristics.
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Overview

problems

sort data
search data
analyze structure
compress data

abstraction

algorithms " data structures

divide & conquer lists
greedy trees
randomization graphs

properties

runtime complexity memory complexity
correctness optimality

solutions and applications
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Data Structures

Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.

Linus Torwalds
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Data Structures

Show me your algorithm and conceal your data structures,
and | shall continue to be mystified.

Show me your data structures, and | won't usually need your
algorithm; it will be obvious.

Fred Brooks (paraphrased)J
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Data Structure: Array

m Arrays are one of the fundamental data structures, that can
be found in (almost) every programming language.

m An array stores a sequence of elements (of the same memory
size) as a contiguous sequence of bytes in memory.

m The number of elements is fixed.

m We can access elements by their index.

In Java:

byte[] myByteArray = new byte[100];
char[] myCharArray = new char[50];
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Example: char Array

One char occupies 1 byte.

The first element is at memory address 2000
(7DO0 in hexadecimal).

The first element has index O.
Then the element with index i is at address 2000 + i.

Memory
address 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 0x7D7 0x7D8 0x7D9 0x7DA

h e | [ o _ w o) r | d

Index
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Array Position of /-th Element Easy to Compute

In general:

m First position typically indexed with 0 or 1.
In the following, s for the index of the first element.

m Suppose the array starts at memory address a and each array
element occupies b bytes.

m Then the element with index i occupies bytes a + b(i — s) to
a+b(i—s+1)—1.

With 32-bit integers (4 byte)
Memory
address 2000 2001 2002 2003 2004 2005 2006 2007
(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 Ox7D7
I I I I I I
42 23
| | | | | |

Index
0 1
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i
set (i, x) — write object x to position i
length() — return length of the array
find(x) — return index of element x or None if not included.
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i ~~ ©(1)
set (i, x) — write object x to position i
length() — return length of the array
find(x) — return index of element x or None if not included.
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Operations and their Running Time?
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m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
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length() — return length of the array
find(x) — return index of element x or None if not included.
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
get (i) — return element at position i ~~ ©(1)
set (i, x) — write object x to position i ~» O(1)
length() — return length of the array ~~ O(1)
find(x) — return index of element x or None if not included.
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores

the size of the array (number of elements) and
the address of the start of the allocated memory.

m What is the running time of the following operations
(relative to the size n of the array)?

get (i) — return element at position 1 ~ O(1)

set (i, x) — write object x to position i ~» O(1)

length() — return length of the array ~~ O(1)

find(x) — return index of element x or None if not included.
~> iterates over the array and stops if element found.

~~ Best case ©(1), Avg. and worst case ©(n)
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores

the size of the array (number of elements) and
the address of the start of the allocated memory.

m What is the running time of the following operations
(relative to the size n of the array)?

get (i) — return element at position 1 ~ O(1)

set (i, x) — write object x to position i ~» O(1)

length() — return length of the array ~~ O(1)

find(x) — return index of element x or None if not included.
~> iterates over the array and stops if element found.

~~ Best case ©(1), Avg. and worst case ©(n)

m What is the memory complexity?
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Operations and their Running Time?

m Size of entry is constant for a specific array type
(such as an int array).
m After allocating the memory, the array stores
m the size of the array (number of elements) and
m the address of the start of the allocated memory.
m What is the running time of the following operations
(relative to the size n of the array)?
m get(i) — return element at position i ~~ ©(1)
m set(i, x) — write object x to position i ~» ©(1)
m length() — return length of the array ~~ ©(1)
m find(x) - return index of element x or None if not included.
~> iterates over the array and stops if element found.
~~ Best case ©(1), Avg. and worst case ©(n)

m What is the memory complexity?

Observation

—

Complexity is direct consequence of data representation.
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Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
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Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.
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Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.
m Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)
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Lists in Python

m Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
m Elements “live” somewhere else in memory.
m The memory range of the array only stores their address.
m Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)
— dynamic array
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Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

m Need arrays that can grow dynamically.

m Runtime complexity of previous operations should be
preserved.
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Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

m Need arrays that can grow dynamically.

m Runtime complexity of previous operations should be
preserved.

Additional operations:
m append(x) (or push) — append element x at the end.
m insert(i, x) — insert element x at position i.
m pop() - remove the last element.

m remove (i) - remove the element at position i.
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Changing the Array Size: Naive Method

m append (and insert) increase the size of the array.

m pop decreases the size.
m Naive method:

m Allocate new memory range that is one element larger/smaller.
m Move all (but the potentially popped) element over.
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Changing the Array Size: Naive Method

m append (and insert) increase the size of the array.

B pop decreases the size.
m Naive method:

m Allocate new memory range that is one element larger/smaller.
m Move all (but the potentially popped) element over.

With this approach, these operations would take linear time
in the current size of the array!
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Better Approach: Overallocate Memory

m Allocate more memory than needed for the current array size.
m Distinguish
m capacity = number of elements that fit in the allocated space.
B size = number of currently contained elements.
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Better Approach: Append/Insert

Append
m If capacity > size:
m Write the new element to position size and increment size.
m Otherwise (capacity = size):
m Allocate new memory that is larger than necessary
(e.g. twice the previous capacity).

m Copy all elements to the new memory (release the old one).
m Update the capacity and continue as in case capacity > size.

Insert at pos /: Analogously but move all elements at positions i to
size-1 one position to the right before writing the new element to J.
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Better Approach: Pop/Remove

m If capacity much too large (e.g. capacity > 4 - size),
move all elements into new smaller memory range
(e.g. with half the previous capacity)
m Pop: remove element at position size - 1 and decrement size.

m Remove: remove element at position / and move all elements
right of / one position to the left, decrepement size.
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Summary

Amortized Analysis

m Worst-case analysis often pessimistic: append takes linear
time if new memory allocated but in a sequence of append
operations, this will happen rarely.

m Amortized analysis determines the average cost of an
operation over an entire sequence of operations.

m Don't confuse this with an average-case analysis.

m Different methods

m Aggregate analysis
m Accounting method < now
m Potential method
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Accounting Method

Assign charges to operations.

Some operations charged more or less than they actually cost.
If charged more: save difference as credit

If charged less: use up some credit to pay for the difference.

Credit must be non-negative all the time.

Then the total amortized cost is always an upper bound on
the actual total costs so far.
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Accountlng Method: Append |

m Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

m Append with resize: linear cost (1 for every element).

m If the append element gets position 2/ (i € Nso),
m we first allocate overall space for 2/*1 elements, and
m move all 2' — 1 existing elements to the new space.
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Accounting Method: Append |

m Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

m Append with resize: linear cost (1 for every element).
m If the append element gets position 2/ (i € Nso),
= we first allocate overall space for 2*! elements, and
m move all 2' — 1 existing elements to the new space.
m Starting from an empty array executing a sequence of append
operations, we observe cost sequence
1,1,3,1,5,1,1,1,9,1,1,1,1,1,1, 1,17, 1 ...
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Accounting Method: Append I

Charge cost 3 for every append operation.

size (after append) capacity charge cost credit

1 2 3 1 2
2 2 3 1 4
3 4 3 3 4
4 4 3 1 6
5 8 3 5 4
6 8 3 1 6
7 8 3 1 8
8 8 3 1 10
9 16 3 9 4
10 16 3 1 6

Charging 3 per operation covers all “running time costs”.
— Append has constant amortized running time.



Data Structures Arrays

Summary
0000000000000 00e [e]e)

Worst-Case Running Time Array

Operation Array

Access element by position 0(1)
Prepend/remove first element ~ O(n)
Append O(1) (amortized)
Remove last element O(1) (amortized)

Insert, remove from the middle O(n)
Traverse all elements O(n)
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Motivation

m Arrays need a large continuous block of memory.

m Inserting elements at arbitrary positions is expensive.

Alternative that allows us to distribute the elements in memory? )
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Question?

m How can we order elements that are distributed in memory?

not
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Question?

m How can we order elements that are distributed in memory?

first
N - not
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Linked Lists

m Every node stores its entry as well as a reference (pointer) to
its successor.

m Need special value for the next pointer of the last element.
m ...or a reference to the last element.

(last)

'
'

. o Item1 A ltem2 | o L ~Jitemn] ~end
first - next next next next |~
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Jupyter Notebook

@
_
Jupyter
o

Jupyter notebook: linked lists.ipynb
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Implementation: Node

1 class Node:

2 def __init__(self, item, next=None):
3 self.item = item

4 self .next = next
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Implementation: List (without last reference)

class LinkedList:
def __init__(self):
self.first = None

1
2
3
4
5 # prepend item at the front of the list
6 def prepend(self, item):

7 new_node = Node(item, self.first)

8 self.first = new_node

9

10 ... # other methods added to nmotebook after lecture
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Worst-Case Running Time Array / Linked List

Operation Array Linked List
Prepend/remove first element ~ O(n) 0o(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle ~ O(n) O(n)
Traverse all elements O(n) O(n)

Find an element O(n) O(n)
Access element by position 0(1) -

What running times could we improve if we also maintained a
pointer to the last element of the linked list?
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Worst-Case Running Time Array / Linked List

Operation Array Linked List
Prepend/remove first element ~ O(n) 0o(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle ~ O(n) O(n)
Traverse all elements O(n) O(n)

Find an element O(n) O(n)
Access element by position 0(1) -

What running times could we improve if we also maintained a
pointer to the last element of the linked list?

Take-home Message
m Different data structures have different trade-offs.
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Doubly Linked Lists

m Idea: Do not only store a reference to the successor but also
to the predecessor.

m Renders appending at/removal from end constant time.

first last

\ ltem 1 Item 2 ltem 3 /
next >< next >< next
/ prev prev prev \

None None
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Jupyter Notebook

@
N
Jupyter
o

Jupyter notebook: doubly_linked lists.ipynb
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Doubly Linked Lists: Implementation

1 class Node:

2 def __init__(self, item, next=None, prev=None):
3 self.item = item

4 self .next = next

5 self.prev = prev

6

7  class DoublyLinkedList:

8 def __init__(self):

9 self.first = None

10 self.last = None

11

12 def is_empty(self):

13 return self.first is None
14

15 # other methods on next slides



Linked Lists Summar

00000000000 e0000

Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

\ ltem 1 ltem 2 | ltem 3
next >< next >< next
/ prev prev prev

None None
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Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 ltem 2 | ltem 3
next next >< next >< next
prev / prev prev prev

None None None
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Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 ltem 2 | ltem 3
next next >< next >< next
prev prev prev prev

None None
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Doubly Linked Lists: prepend

15 def prepend(self, item):
16 if self.is_empty():
17 self.first = Node(item)
18 self.last = self.first
19 else:
20 node = Node(item, self.first, None)
21 self.first.prev = node
22 self.first = node
first last

ltem 4 ltem 1 Item 2 | ltem 3 /
next >< next >< next >< next
prev prev prev prev

None None
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Doubly Linked Lists: append

24 def append(self, item):

25 if self.is_empty():

26 self.first = Node(item)

27 self.last = self.first

28 else:

29 node = Node(item, None, self.last)
30 self.last.next = node

31 self.last = node
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Doubly Linked Lists: remove_first

33 def remove_first(self):

34 if self.is_empty():

35 raise Exception("removing from empty list")
36 item = self.first.item

37 self . first = self.first.next

38 if self.first is not None:

39 self.first.prev = None

40 else:

41 self.last = None

42 return item
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Doubly Linked Lists: remove_last

With doubly linked lists, removing the last element is analogous to
removing the first element:

44 def remove_last(self):

45 if self.is_empty():

46 raise Exception("removing from empty list")
47 item = self.last.item

48 self.last = self.last.prev

49 if self.last is not None:

50 self.last.next = None

51 else:

52 self.first = None

53 return item
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Worst-Case Runnlng Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element  O(n) 0o(1)

Append O(1) (amort.) O(1)

Remove last element O(1) (amort.) O(1)

Insert, remove in the middle ~ O(n) O(n)/O(1)*
Traverse all elements O(n) O(n)

Find an element O(n) O(n)

Access element by position Oo(1) —

* constant, if node at the position is parameter
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Worst-Case Runnlng Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element  O(n) 0o(1)

Append O(1) (amort.) O(1)

Remove last element O(1) (amort.) O(1)

Insert, remove in the middle ~ O(n) O(n)/O(1)*
Traverse all elements O(n) O(n)

Find an element O(n) O(n)

Access element by position Oo(1) —

* constant, if node at the position is parameter

Take-home Message

Compared to singly linked lists, doubly linked lists need a linear
amount of additional memory (for the prev references), but
provide better running times for operations at the end of the list.
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Summary

m An amortized analysis determines the average cost of an
operation over an entire sequence of operations.
m Arrays and linked lists store sequences of items.

m Arrays store items in a continuous space and can efficiently
access an item by index.

m Linked lists store items in nodes with a reference to the next
node (doubly linked lists: also to previous node).
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