
Algorithms and Data Structures
B1. Arrays and Linked Lists

Gabriele Röger

University of Basel

March 27/April 3, 2024

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 1 / 42

Algorithms and Data Structures
March 27/April 3, 2024 — B1. Arrays and Linked Lists

B1.1 Data Structures

B1.2 Arrays

B1.3 Linked Lists

B1.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 2 / 42

B1. Arrays and Linked Lists Data Structures

B1.1 Data Structures

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 3 / 42

B1. Arrays and Linked Lists Data Structures

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 4 / 42



B1. Arrays and Linked Lists Data Structures

Data Structures

▶ Programming goes beyond
writing algorithms.
▶ Organisation of data is

central.

▶ Elegant data structures lead
to elegant code.

▶ Programmers. . .
▶ need a catalogue of data

structures, and
▶ need to know their

characteristics.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 5 / 42

B1. Arrays and Linked Lists Data Structures

Overview

problems
 

sort data
search data

analyze structure
compress data

algorithms

divide & conquer
greedy

randomization

data structures

lists
trees

graphs

properties

runtime complexity memory complexity
correctness optimality

solutions and applications

abstraction

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 6 / 42

B1. Arrays and Linked Lists Data Structures

Data Structures

Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.

Linus Torwalds

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 7 / 42

B1. Arrays and Linked Lists Data Structures

Data Structures

Show me your algorithm and conceal your data structures,
and I shall continue to be mystified.

Show me your data structures, and I won’t usually need your
algorithm; it will be obvious.

Fred Brooks (paraphrased)

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 8 / 42



B1. Arrays and Linked Lists Arrays

B1.2 Arrays

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 9 / 42

B1. Arrays and Linked Lists Arrays

Data Structure: Array

▶ Arrays are one of the fundamental data structures, that can
be found in (almost) every programming language.

▶ An array stores a sequence of elements (of the same memory
size) as a contiguous sequence of bytes in memory.

▶ The number of elements is fixed.

▶ We can access elements by their index.

In Java:

byte[] myByteArray = new byte[100];

char[] myCharArray = new char[50];

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 10 / 42

B1. Arrays and Linked Lists Arrays

Example: char Array

▶ One char occupies 1 byte.

▶ The first element is at memory address 2000
(7D0 in hexadecimal).

▶ The first element has index 0.

▶ Then the element with index i is at address 2000 + i.

0 1 2 3 4 5 6 7 8 9 10

h e l l o w o r l d

Index

Memory
address
(hex)

2000

0x7D0

2001

0x7D1

2002

0x7D2

2003

0x7D3

2004

0x7D4

2005

0x7D5

2006

0x7D6

2007

0x7D7

2008

0x7D8

2009

0x7D9

2010

0x7DA

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 11 / 42

B1. Arrays and Linked Lists Arrays

Array: Position of i -th Element Easy to Compute

In general:

▶ First position typically indexed with 0 or 1.
In the following, s for the index of the first element.

▶ Suppose the array starts at memory address a and each array
element occupies b bytes.

▶ Then the element with index i occupies bytes a+ b(i − s) to
a+ b(i − s + 1)− 1.

With 32-bit integers (4 byte)

42 23

Index

Memory
address
(hex)

2000

0x7D0

2001

0x7D1

2002

0x7D2

2003

0x7D3

2004

0x7D4

2005

0x7D5

2006

0x7D6

2007

0x7D7

0 1

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 12 / 42



B1. Arrays and Linked Lists Arrays

Operations and their Running Time?

▶ Size of entry is constant for a specific array type
(such as an int array).

▶ After allocating the memory, the array stores
▶ the size of the array (number of elements) and
▶ the address of the start of the allocated memory.

▶ What is the running time of the following operations
(relative to the size n of the array)?
▶ get(i) – return element at position i ⇝ Θ(1)
▶ set(i, x) – write object x to position i ⇝ Θ(1)
▶ length() – return length of the array ⇝ Θ(1)
▶ find(x) – return index of element x or None if not included.
⇝ iterates over the array and stops if element found.
⇝ Best case Θ(1), Avg. and worst case Θ(n)

▶ What is the memory complexity?

Observation
Complexity is direct consequence of data representation.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 13 / 42

B1. Arrays and Linked Lists Arrays

Lists in Python

▶ Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
▶ Elements “live” somewhere else in memory.
▶ The memory range of the array only stores their address.

▶ Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)

→ dynamic array

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 14 / 42

B1. Arrays and Linked Lists Arrays

Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

▶ Need arrays that can grow dynamically.

▶ Runtime complexity of previous operations should be
preserved.

Additional operations:

▶ append(x) (or push) – append element x at the end.

▶ insert(i, x) – insert element x at position i.

▶ pop() - remove the last element.

▶ remove(i) - remove the element at position i.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 15 / 42

B1. Arrays and Linked Lists Arrays

Changing the Array Size: Naive Method

▶ append (and insert) increase the size of the array.

▶ pop decreases the size.
▶ Naive method:

▶ Allocate new memory range that is one element larger/smaller.
▶ Move all (but the potentially popped) element over.

With this approach, these operations would take linear time
in the current size of the array!

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 16 / 42



B1. Arrays and Linked Lists Arrays

Better Approach: Overallocate Memory

▶ Allocate more memory than needed for the current array size.
▶ Distinguish

▶ capacity = number of elements that fit in the allocated space.
▶ size = number of currently contained elements.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 17 / 42

B1. Arrays and Linked Lists Arrays

Better Approach: Append/Insert

Append
▶ If capacity > size:

▶ Write the new element to position size and increment size.

▶ Otherwise (capacity = size):
▶ Allocate new memory that is larger than necessary

(e.g. twice the previous capacity).
▶ Copy all elements to the new memory (release the old one).
▶ Update the capacity and continue as in case capacity > size.

Insert at pos i : Analogously but move all elements at positions i to
size-1 one position to the right before writing the new element to i .

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 18 / 42

B1. Arrays and Linked Lists Arrays

Better Approach: Pop/Remove

▶ If capacity much too large (e.g. capacity > 4 · size),
move all elements into new smaller memory range
(e.g. with half the previous capacity)

▶ Pop: remove element at position size - 1 and decrement size.

▶ Remove: remove element at position i and move all elements
right of i one position to the left, decrepement size.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 19 / 42

B1. Arrays and Linked Lists Arrays

Amortized Analysis

▶ Worst-case analysis often pessimistic: append takes linear
time if new memory allocated but in a sequence of append
operations, this will happen rarely.

▶ Amortized analysis determines the average cost of an
operation over an entire sequence of operations.

▶ Don’t confuse this with an average-case analysis.
▶ Different methods

▶ Aggregate analysis
▶ Accounting method ← now
▶ Potential method

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 20 / 42



B1. Arrays and Linked Lists Arrays

Accounting Method

▶ Assign charges to operations.

▶ Some operations charged more or less than they actually cost.

▶ If charged more: save difference as credit

▶ If charged less: use up some credit to pay for the difference.

▶ Credit must be non-negative all the time.

▶ Then the total amortized cost is always an upper bound on
the actual total costs so far.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 21 / 42

B1. Arrays and Linked Lists Arrays

Accounting Method: Append I

▶ Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

▶ Append with resize: linear cost (1 for every element).
▶ If the append element gets position 2i (i ∈ N>0),
▶ we first allocate overall space for 2i+1 elements, and
▶ move all 2i − 1 existing elements to the new space.

▶ Starting from an empty array executing a sequence of append
operations, we observe cost sequence
1, 1, 3, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1 . . .

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 22 / 42

B1. Arrays and Linked Lists Arrays

Accounting Method: Append II

Charge cost 3 for every append operation.

size (after append) capacity charge cost credit
1 2 3 1 2
2 2 3 1 4
3 4 3 3 4
4 4 3 1 6
5 8 3 5 4
6 8 3 1 6
7 8 3 1 8
8 8 3 1 10
9 16 3 9 4
10 16 3 1 6

Charging 3 per operation covers all “running time costs”.
→ Append has constant amortized running time.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 23 / 42

B1. Arrays and Linked Lists Arrays

Worst-Case Running Time Array

Operation Array

Access element by position O(1)
Prepend/remove first element O(n)
Append O(1) (amortized)
Remove last element O(1) (amortized)
Insert, remove from the middle O(n)
Traverse all elements O(n)

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 24 / 42



B1. Arrays and Linked Lists Linked Lists

B1.3 Linked Lists

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 25 / 42

B1. Arrays and Linked Lists Linked Lists

Motivation

▶ Arrays need a large continuous block of memory.

▶ Inserting elements at arbitrary positions is expensive.

Alternative that allows us to distribute the elements in memory?

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 26 / 42

B1. Arrays and Linked Lists Linked Lists

Question?

▶ How can we order elements that are distributed in memory?

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 27 / 42

B1. Arrays and Linked Lists Linked Lists

Linked Lists

▶ Every node stores its entry as well as a reference (pointer) to
its successor.

▶ Need special value for the next pointer of the last element.

▶ . . . or a reference to the last element.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 28 / 42



B1. Arrays and Linked Lists Linked Lists

Jupyter Notebook

Jupyter notebook: linked lists.ipynb

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 29 / 42

B1. Arrays and Linked Lists Linked Lists

Implementation: Node

1 class Node:

2 def __init__(self, item, next=None):

3 self.item = item

4 self.next = next

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 30 / 42

B1. Arrays and Linked Lists Linked Lists

Implementation: List (without last reference)

1 class LinkedList:

2 def __init__(self):

3 self.first = None

4

5 # prepend item at the front of the list

6 def prepend(self, item):

7 new_node = Node(item, self.first)

8 self.first = new_node

9

10 ... # other methods added to notebook after lecture

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 31 / 42

B1. Arrays and Linked Lists Linked Lists

Worst-Case Running Time Array / Linked List

Operation Array Linked List

Prepend/remove first element O(n) O(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle O(n) O(n)
Traverse all elements O(n) O(n)
Find an element O(n) O(n)
Access element by position O(1) –

What running times could we improve if we also maintained a
pointer to the last element of the linked list?

Take-home Message
▶ Different data structures have different trade-offs.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 32 / 42



B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists

▶ Idea: Do not only store a reference to the successor but also
to the predecessor.

▶ Renders appending at/removal from end constant time.

Item 1
next
prev

Item 2
next
prev

Item 3
next
prev

None

lastfirst

None

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 33 / 42

B1. Arrays and Linked Lists Linked Lists

Jupyter Notebook

Jupyter notebook: doubly linked lists.ipynb

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 34 / 42

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: Implementation

1 class Node:

2 def __init__(self, item, next=None, prev=None):

3 self.item = item

4 self.next = next

5 self.prev = prev

6

7 class DoublyLinkedList:

8 def __init__(self):

9 self.first = None

10 self.last = None

11

12 def is_empty(self):

13 return self.first is None

14

15 # other methods on next slides

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 35 / 42

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: prepend

15 def prepend(self, item):

16 if self.is_empty():

17 self.first = Node(item)

18 self.last = self.first

19 else:

20 node = Node(item, self.first, None)

21 self.first.prev = node

22 self.first = node

Item 1
next
prev

Item 2
next
prev

Item 3
next
prev

None

lastfirst

None

Item 4
next
prev

None

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 36 / 42



B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: append

24 def append(self, item):

25 if self.is_empty():

26 self.first = Node(item)

27 self.last = self.first

28 else:

29 node = Node(item, None, self.last)

30 self.last.next = node

31 self.last = node

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 37 / 42

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: remove first

33 def remove_first(self):

34 if self.is_empty():

35 raise Exception("removing from empty list")

36 item = self.first.item

37 self.first = self.first.next

38 if self.first is not None:

39 self.first.prev = None

40 else:

41 self.last = None

42 return item

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 38 / 42

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: remove last

With doubly linked lists, removing the last element is analogous to
removing the first element:

44 def remove_last(self):

45 if self.is_empty():

46 raise Exception("removing from empty list")

47 item = self.last.item

48 self.last = self.last.prev

49 if self.last is not None:

50 self.last.next = None

51 else:

52 self.first = None

53 return item

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 39 / 42

B1. Arrays and Linked Lists Linked Lists

Worst-Case Running Time Array / Doubly Linked List

Operation Array Doubly Linked List

Prepend/remove first element O(n) O(1)
Append O(1) (amort.) O(1)
Remove last element O(1) (amort.) O(1)
Insert, remove in the middle O(n) O(n)/O(1)∗

Traverse all elements O(n) O(n)
Find an element O(n) O(n)
Access element by position O(1) –

* constant, if node at the position is parameter

Take-home Message

Compared to singly linked lists, doubly linked lists need a linear
amount of additional memory (for the prev references), but
provide better running times for operations at the end of the list.

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 40 / 42



B1. Arrays and Linked Lists Summary

B1.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 41 / 42

B1. Arrays and Linked Lists Summary

Summary

▶ An amortized analysis determines the average cost of an
operation over an entire sequence of operations.

▶ Arrays and linked lists store sequences of items.
▶ Arrays store items in a continuous space and can efficiently

access an item by index.
▶ Linked lists store items in nodes with a reference to the next

node (doubly linked lists: also to previous node).

G. Röger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 42 / 42


	Data Structures
	

	Arrays
	

	Linked Lists
	

	Summary
	


