Algorithms and Data Structures
B1. Arrays and Linked Lists

Gabriele Roger

University of Basel

March 27/April 3, 2024

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024

1/

Algorithms and Data Structures
March 27/April 3, 2024 — B1. Arrays and Linked Lists

B1.1 Data Structures
B1.2 Arrays

B1.3 Linked Lists

B1.4 Summary

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 2 /42

B1. Arrays and Linked Lists Data Structures

B1.1 Data Structures

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 3 /42

B1. Arrays and Linked Lists Data Structures

Content of the Course

— sorting

complexity
analysis

- searching

graph
algorithms

— concepts

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 4 /42

B1. Arrays and Linked Lists

Data Structures

» Programming goes beyond
writing algorithms.
» Organisation of data is
central.

» Elegant data structures lead
to elegant code.

» Programmers. ..
> need a catalogue of data

structures, and

need to know their

characteristics.

>

G. Roger (University of Basel) Algorithms and

Data Structures

lucid, sysmmatic,
ond panarrating
trontment of basic
and dynomic datn
structures, sseting,
recursive aigecithms,
siructures,

and tompiling

PRENTICE-HALL
SERIES IN

COMPUTATION

Data Structures March 27/April 3, 2024 5/

B1. Arrays and Linked Lists

Overview

problems

sort data
search data
analyze structure
compress data

Data Structures

abstraction

algorithms " data structures

lists
trees
graphs

divide & conquer
greedy
randomization

G. Roger (University of Basel)

properties

runtime complexity memory complexity
correctness optimality

solutions and applications

Algorithms and Data Structures

March 27/April 3, 2024

6/ 42

B1. Arrays and Linked Lists Data Structures

Data Structures

Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.

Linus Torwalds

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 7/ 42

B1. Arrays and Linked Lists Data Structures

Data Structures

Show me your algorithm and conceal your data structures,
and | shall continue to be mystified.

Show me your data structures, and | won't usually need your
algorithm; it will be obvious.

Fred Brooks (paraphrased)

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 8 /42

B1. Arrays and Linked Lists Arrays

B1.2 Arrays

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 9 /42

B1. Arrays and Linked Lists Arrays

Data Structure: Array

> Arrays are one of the fundamental data structures, that can
be found in (almost) every programming language.

» An array stores a sequence of elements (of the same memory
size) as a contiguous sequence of bytes in memory.

» The number of elements is fixed.

P> We can access elements by their index.

In Java:

byte[] myByteArray = new byte[100];
char[] myCharArray = new char[50];

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 10 / 42

B1. Arrays and Linked Lists Arrays

Example: char Array

» One char occupies 1 byte.

» The first element is at memory address 2000
(7DO0 in hexadecimal).

» The first element has index 0.
» Then the element with index i is at address 2000 + i.

Memory
address 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 0x7D7 0x7D8 0x7D9 0x7DA

h e | [o _ w o) r | d

Index

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 11

42

B1. Arrays and Linked Lists

Array: Position of i-th Element Easy to Compute

In general:
> First position typically indexed with 0 or 1.
In the following, s for the index of the first element.
» Suppose the array starts at memory address a and each array
element occupies b bytes.
» Then the element with index i occupies bytes a + b(i — s) to
a+b(i—s+1)—1.

With 32-bit integers (4 byte)
Memory
address 2000 2001 2002 2003 2004 2005 2006 2007
(hex) 0x7D0 0x7D1 0x7D2 0x7D3 0x7D4 0x7D5 0x7D6 0x7D7
[[[[[[
42 23
| | | | | |

Index
0 1

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024

Arrays

12 / 42

B1. Arrays and Linked Lists Arrays

Operations and their Running Time?

> Size of entry is constant for a specific array type
(such as an int array).
> After allocating the memory, the array stores
> the size of the array (number of elements) and
> the address of the start of the allocated memory.

» What is the running time of the following operations
(relative to the size n of the array)?
> get (i) — return element at position i ~~ O(1)
set (i, x) — write object x to position i ~» O(1)
length() — return length of the array ~~ ©(1)
find(x) — return index of element x or None if not included.
~> iterates over the array and stops if element found.
~+ Best case ©(1), Avg. and worst case ©(n)

vvyy

» What is the memory complexity?

Observation
Complexity is direct consequence of data representation.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 13 / 42

B1. Arrays and Linked Lists Arrays

Lists in Python

» Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]

> Elements “live” somewhere else in memory.
» The memory range of the array only stores their address.

» Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)
— dynamic array

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 14 / 42

B1. Arrays and Linked Lists Arrays

Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

> Need arrays that can grow dynamically.

» Runtime complexity of previous operations should be
preserved.

Additional operations:
» append(x) (or push) — append element x at the end.
> insert(i, x) — insert element x at position i.
» pop() - remove the last element.

P> remove (i) - remove the element at position i.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 15 / 42

B1. Arrays and Linked Lists Arrays

Changing the Array Size: Naive Method

> append (and insert) increase the size of the array.
> pop decreases the size.

» Naive method:

> Allocate new memory range that is one element larger/smaller.
> Move all (but the potentially popped) element over.

With this approach, these operations would take linear time
in the current size of the array!

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 16 /

42

B1. Arrays and Linked Lists Arrays

Better Approach: Overallocate Memory

» Allocate more memory than needed for the current array size.
» Distinguish
P capacity = number of elements that fit in the allocated space.
P size = number of currently contained elements.

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 17 / 42

B1. Arrays and Linked Lists

Better Approach: Append/Insert

Append
» If capacity > size:
» Write the new element to position size and increment size.
» Otherwise (capacity = size):
» Allocate new memory that is larger than necessary
(e.g. twice the previous capacity).

> Copy all elements to the new memory (release the old one).
» Update the capacity and continue as in case capacity > size.

Insert at pos i: Analogously but move all elements at positions i to
size-1 one position to the right before writing the new element to /.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024

Arrays

18

42

B1. Arrays and Linked Lists Arrays

Better Approach: Pop/Remove

» If capacity much too large (e.g. capacity > 4 - size),
move all elements into new smaller memory range
(e.g. with half the previous capacity)

> Pop: remove element at position size - 1 and decrement size.

» Remove: remove element at position i and move all elements
right of / one position to the left, decrepement size.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 19 / 42

B1. Arrays and Linked Lists Arrays

Amortized Analysis

» Worst-case analysis often pessimistic: append takes linear
time if new memory allocated but in a sequence of append
operations, this will happen rarely.

> Amortized analysis determines the average cost of an
operation over an entire sequence of operations.

» Don't confuse this with an average-case analysis.

» Different methods

> Aggregate analysis
» Accounting method < now
> Potential method

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 20 / 42

B1. Arrays and Linked Lists Arrays

Accounting Method

Assign charges to operations.

Some operations charged more or less than they actually cost.
If charged more: save difference as credit

If charged less: use up some credit to pay for the difference.

Credit must be non-negative all the time.

vVVvVvYvYyVvVvyy

Then the total amortized cost is always an upper bound on
the actual total costs so far.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 21/ 42

B1. Arrays and Linked Lists

Accounting Method: Append |

» Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

» Append with resize: linear cost (1 for every element).
> If the append element gets position 2 (i € Nyg),
> we first allocate overall space for 2/*1 elements, and
> move all 2' — 1 existing elements to the new space.
» Starting from an empty array executing a sequence of append
operations, we observe cost sequence
1,1,3,1,5,1,1,1,9,1,1,1,1,1,1,1,17, 1 ...

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024

Arrays

22 / 42

B1. Arrays and Linked Lists

Accounting Method: Append I

Charge cost 3 for every append operation.

size (after append)
1

© 00 ~NO 1B~ WwWwiN

—
o

capacity charge cost

2 3
2 3
4 3
4 3
8 3
8 3
8 3
8 3
16 3
16 3

1

= O = === W

credit
2

® o~ O AN

[ay
> o

6

Charging 3 per operation covers all “running time costs” .

— Append has constant amortized running time.

G. Roger (University of Basel)

Algorithms and Data Structures

March 27/April 3, 2024

Arrays

23 / 42

B1. Arrays and Linked Lists Arrays

Worst-Case Running Time Array

Operation Array

Access element by position 0(1)
Prepend/remove first element ~ O(n)
Append O(1) (amortized)
Remove last element O(1) (amortized)
Insert, remove from the middle O(n)
Traverse all elements O(n)

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 24 / 42

B1. Arrays and Linked Lists Linked Lists

B1.3 Linked Lists

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 25 / 42

B1. Arrays and Linked Lists Linked Lists

Motivation

» Arrays need a large continuous block of memory.

P Inserting elements at arbitrary positions is expensive.

Alternative that allows us to distribute the elements in memory?

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 26 / 42

B1. Arrays and Linked Lists Linked Lists

Question?

» How can we order elements that are distributed in memory?

not
first
not
-t néxt
next) next

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 27 / 42

B1. Arrays and Linked Lists Linked Lists

Linked Lists

> Every node stores its entry as well as a reference (pointer) to
its successor.

» Need special value for the next pointer of the last element.

> . ..or a reference to the last element.
(last)
. o lteml | 4 ltem?2 e Jitemn | _~end
first - next |~ next next next |~

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 28 / 42

B1. Arrays and Linked Lists Linked Lists

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: linked lists.ipynb

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 29 / 42

B1. Arrays and Linked Lists Linked Lists

Implementation: Node

class Node:
def __init__(self, item, next=None):
self.item = item
self .next = next

W N

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 30 / 42

B1. Arrays and Linked Lists Linked Lists

Implementation: List (without last reference)

class LinkedList:
def __init__(self):
self.first = None

1
2
3
4
5 # prepend ttem at the front of the list
6 def prepend(self, item):

7 new_node = Node(item, self.first)

8 self.first = new_node

9

10 ... # other methods added to notebook after lecture

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 31 /42

B1. Arrays and Linked Lists Linked Lists

Worst-Case Running Time Array / Linked List

Operation Array Linked List
Prepend/remove first element ~ O(n) 0(1)
Append O(1) (amortized) O(n)
Remove last element O(1) (amortized) O(n)
Insert, remove from the middle O(n) O(n)
Traverse all elements O(n) O(n)

Find an element O(n) O(n)
Access element by position 0(1) -

What running times could we improve if we also maintained a
pointer to the last element of the linked list?

Take-home Message
» Different data structures have different trade-offs.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 32 /42

B1. Arrays and Linked Lists

Doubly Linked Lists

> |dea: Do not only store a reference to the successor but also
to the predecessor.

» Renders appending at/removal from end constant time.

first last

\ ltem 1} ltem 2 | ltem 3 ‘/
next / next / next

prev N prev N prev

None None

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024

33

Linked Lists

42

B1. Arrays and Linked Lists Linked Lists

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: doubly linked lists.ipynb

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 34 / 42

B1. Arrays and Linked Lists

Doubly Linked Lists: Implementation

© 0w N O Otk W N

e e e
gt W N = O

class Node:
def __init__(self, item, next=None, prev=None):
self.item = item
self .next = next
self.prev = prev

class DoublyLinkedList:

def __init__(self):
self.first = None
self.last = None

def is_empty(self):
return self.first is None

other methods on next slides

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024

Linked Lists

35 / 42

B1. Arrays and Linked Lists

Doubly Linked Lists: prepend

15
16
17
18
19
20
21
22

def prepend(self, item):

if self.is_empty():
self.first = Node(item)
self.last = self.first

else:
node = Node(item, self.first, None)
self.first.prev = node
self.first = node

first last
ltem 4 ltem 1 ltem 2k ltem 3 /
next >< next >< next >< next
/ prev prev prev prev
None None

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024

Linked Lists

36 / 42

B1. Arrays and Linked Lists

Doubly Linked Lists: append

24
25
26
27
28
29
30
31

G. Roger (University of Basel)

def append(self, item):

if self.is_empty():
self.first = Node(item)
self.last = self.first

else:
node = Node(item, None, self.last)
self.last.next = node
self.last = node

Algorithms and Data Structures

March 27/April 3, 2024

Linked Lists

37 /42

B1. Arrays and Linked Lists

Doubly Linked Lists: remove_first

33
34
35
36
37
38
39
40
41
42

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024

def remove_first(self):

if self.is_empty():
raise Exception("removing from empty list")
item = self.first.item
self . first = self.first.next
if self.first is not None:
self.first.prev = None
else:
self.last = None
return item

Linked Lists

38 / 42

B1. Arrays and Linked Lists

Doubly Linked Lists: remove_last

44
45
46
47
48
49
50
51
52
53

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024

def remove_last(self):

if self.is_empty():
raise Exception("removing from empty list")
item = self.last.item
self.last = self.last.prev
if self.last is not None:
self.last.next = None
else:
self.first = None
return item

Linked Lists

With doubly linked lists, removing the last element is analogous to
removing the first element:

39 / 42

B1. Arrays and Linked Lists Linked Lists

Worst-Case Running Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element O(n) 0o(1)

Append O(1) (amort.) O(1)

Remove last element O(1) (amort.) O(1)

Insert, remove in the middle ~ O(n) O(n)/O(1)*
Traverse all elements O(n) O(n)

Find an element O(n) O(n)

Access element by position 0(1) =

* constant, if node at the position is parameter

Take-home Message

Compared to singly linked lists, doubly linked lists need a linear
amount of additional memory (for the prev references), but
provide better running times for operations at the end of the list.

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 40 / 42

B1. Arrays and Linked Lists Summary

B1.4 Summary

G. Roger (University of Basel) Algorithms and Data Structures March 27/April 3, 2024 41 / 42

B1. Arrays and Linked Lists Summary

Summary

» An amortized analysis determines the average cost of an
operation over an entire sequence of operations.
> Arrays and linked lists store sequences of items.

» Arrays store items in a continuous space and can efficiently
access an item by index.

> Linked lists store items in nodes with a reference to the next
node (doubly linked lists: also to previous node).

G. Roger (University of Basel) Algorithms and Data Structures March 27 /April 3, 2024 42 / 42

	Data Structures
	

	Arrays
	

	Linked Lists
	

	Summary
	

