Algorithms and Data Structures
A15. Sorting: Overview & Outlook

Gabriele Roger

University of Basel

March 21, 2024

Content of the Course

based
complexity
analysis not comparison-
based
fundamental
— searching
graph
algorithms
— concepts

Overview

Overview

Overview

oeo

Comparison-based Sorting: Overview

Algorithm Running time O(-) Memory O(-) stable
best/avg./worst best/avg./worst
Selection sort ~ n? 1 no
Insertion sort n/n?/n? 1 yes
Merge sort nlogn n yes
Quicksort nlogn/nlogn/n®> logn/logn/n no

Heapsort nlogn 1 no

https://www.toptal.com/developers/sorting-algorithms/

Overview

oeo

Comparison-based Sorting: Overview

Algorithm Running time O(-) Memory O(-) stable
best/avg./worst best/avg./worst
Selection sort ~ n? 1 no
Insertion sort n/n?/n? 1 yes
Merge sort nlogn n yes
Quicksort nlogn/nlogn/n®> logn/logn/n no
Heapsort nlogn 1 no

Very nice visualization of the algorithms at
https://www.toptal.com/developers/sorting-algorithms/

https://www.toptal.com/developers/sorting-algorithms/

Overview
ooe

Comparison-based Algorithms: Comments

m Insertion sort is very fast on short sequences and can be used
to improve merge sort or quicksort for short ranges.

Overview

ooe

Comparison-based Algorithms: Comments

m Insertion sort is very fast on short sequences and can be used
to improve merge sort or quicksort for short ranges.

m Quicksort has a very short (= fast) inner loop. With
randomization, the worst case almost never happens.

Overview

ooe

Comparison-based Algorithms: Comments

m Insertion sort is very fast on short sequences and can be used
to improve merge sort or quicksort for short ranges.

m Quicksort has a very short (= fast) inner loop. With
randomization, the worst case almost never happens.

m Merge sort has the advantage of being stable.
The merge step is also relevant for external sorting.
Gets for example often used for data base applications.

Overview

ooe

Comparison-based Algorithms: Comments

m Insertion sort is very fast on short sequences and can be used
to improve merge sort or quicksort for short ranges.

m Quicksort has a very short (= fast) inner loop. With
randomization, the worst case almost never happens.

m Merge sort has the advantage of being stable.
The merge step is also relevant for external sorting.
Gets for example often used for data base applications.

m Heapsort is in practise slightly slower than merge sort, but
interesting because it is an in-place approach.
e.g. for embedded systems.

Overview

ooe

Comparison-based Algorithms: Comments

m Insertion sort is very fast on short sequences and can be used
to improve merge sort or quicksort for short ranges.

m Quicksort has a very short (= fast) inner loop. With
randomization, the worst case almost never happens.

m Merge sort has the advantage of being stable.
The merge step is also relevant for external sorting.
Gets for example often used for data base applications.

m Heapsort is in practise slightly slower than merge sort, but
interesting because it is an in-place approach.
e.g. for embedded systems.

m Equal asymptotic running time does not mean that algorithms

take equally long (different hidden constants in O(-)).
Heapsort needs twice as many comparisons as merge sort.

Outlook
©00000

Outlook

Overview Outlook

O@0000

Partially Sorted Data

m Often some subsequences of the input are already sorted
(so-called runs).

m Insertion sort directly benefits from this.

m For some other approaches, there are variants that exploit
runs, e.g. natural merge sort.

Overview Outlook
00000

Many Equivalent Keys

m Quite common in practical applications.
e.g. sorting students by place of residence

m There are special variants for some algorithms.

m For example, 3-way partitioning in quicksort

<P =P > P

Outlook

[e]e]e] le]e]

Sorting Complex Objects

m Most of the time, we do not want to sort numbers but
complex objects.

m It would be extremely expensive to move them in memory for
every swap.

m Instead: Sort elements that only consist of the key and a
pointer/reference to the actual object.

iew Outlook

[e]e]e]e] Jo]

Not So Correct Algorithms

INEFFECTWVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LisT): DEFINE FRETBOGOSORT(LIST):

IF LENGH(LIST) < 2: // AN OPTIZED BOGOSORT

RETRN LST #f RUNS N O(N LoGN))

PINOT = INT (LENGTH(LIST) / 2) FOR N FROM 1. TO LOG(LENGTH(LIST)):

A= mmmm&om’@.m:ﬁmg SHUFFLE(LIST):

B = HALFHEARTEDMERGE SORT (LT [PvoT: IF 1550RTED (LIST):

A UMMMMM RETURN LiST

RETURN[A, B] // HERE. SORRY. RETURN "KERNEL PRGE FRULT (ERROR CODE: 2)*
DEFNE JOBINERAE QUICKSORT (LIST): | | DEFINE PANICSORT(LIST):

0K 50 YU CHODSE. A PVOT I GSORTED(LiST):

o

full comic at https://xkcd.com/1185/
(CC BY-NC 2.5)

https://xkcd.com/1185/

Overview Outlook
000008

Solve other Problems by Sorting

k-smallest element
m For example, identifying the median (k = |[n/2]).

m Use quicksort but only perform the recursive call for the
relevant range (— quickselect).

Outlook

O0000e

Solve other Problems by Sorting

k-smallest element
m For example, identifying the median (k = |n/2]).

m Use quicksort but only perform the recursive call for the
relevant range (— quickselect).

Duplicates

m How many different keys are there? Which value is most
common? Are there duplicate keys?

m Can be solved directly with quadratic algorithms.

m Or — more clever — sort first and then use a single scan.

Quiz

kahoot.it

	Overview
	

	Outlook
	

	Quiz
	

