Algorithms and Data Structures
A13. Sorting: Lower Bound

Gabriele Röger
University of Basel
March 20, 2024

A13. Sorting: Lower Bound
A. Lower Bound on Necessary Comparison Operations
A.1. Lower Bound on Necessary
Comparison Operations

- So far, merge sort and heapsort had with $O\left(n \log _{2} n\right)$ the best (worst-case) running time.
- Can we do better?We show: Not with comparison-based approaches!

A13. Sorting: Lower Bound Crash Course: Binary Trees

- Binary tree: each node has at most two successor nodes.
- Nodes without successors are called leaves (Image: squares).
- The node without a predecessor (at the top) is the root.
- The depth of a leaf is the number of edges from the root to the leaf.

The maximal depth of a leaf in a binary tree with k leaves is at least $\log _{2} k$.

Abstract Behavior as Tree

Consider an arbitrary comparison-based sorting algorithm A.

- Its behavior only depends on the results of key comparisons
- For each key comparison, there are two possibilities how the algorithm proceeds.
- For an input of a given size, we can depict this graphically as a decision tree

- Execution of A corresponds to tracing a simple path from the root down to a leaf.

What does the algorithm have to be able to do?

- Assumption: all input elements distinct.
- Must sort all input sequences of size n correctly.
- We can adapt all algorithms so that they trace from which position to which position they move the elements.
- Then the result is not the sorted array, but the corresponding permutation.
- Since all possible inputs of size n must be sorted correctly, the algorithm must be able to generate all n ! possible permutations.

Lower Bound I

- Each leaf in the tree corresponds to one permutation.
- For input size n, the tree must thus have at least n ! leaves.
- The maximal depth of a leaf in the tree is therefore $\geq \log _{2}(n!)$.
- There is an input of size n with
$\geq \log _{2}(n!)$ key comparisons.

Lower bound on $\log _{2}(n!)$

- It holds that $n!\geq\left(\frac{n}{2}\right)^{\frac{n}{2}}$
$4!=1 \cdot 2 \cdot \underset{\geq 2}{3} \cdot \underset{\geq 2}{4} \geq 2^{2}$
- $\log _{2}(n!) \geq \log _{2}\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)=\frac{n}{2} \log _{2}\left(\frac{n}{2}\right)$

$$
\begin{aligned}
& =\frac{n}{2}\left(\log _{2} n+\log _{2} \frac{1}{2}\right)=\frac{n}{2}\left(\log _{2} n-\log _{2} 2\right) \\
& =\frac{n}{2}\left(\log _{2} n-1\right)
\end{aligned}
$$

Theorem

Every comparison-based sorting algorithm requires $\Omega(n \log n)$ many key comparisons. As a result, also the running time is $\Omega(n \log n)$.

Merge sort is asymptotically optimal.

A13.2 Summary

Summary

- Every comparison-based sorting algorithm has at least linearithmic running time.

