Algorithms and Data Structures A12. Sorting: Quicksort (& Heapsort)

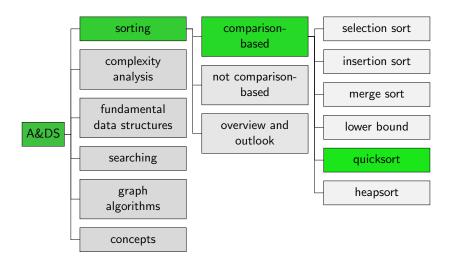
Gabriele Röger

University of Basel

March 20, 2024

Quicksort

Content of the Course



Quicksort: Idea

- Like merge sort a divide-and-conquer algorithm.
- In contrast to merge sort, the sequence is not divided by position but by values.
- For this purpose, select one element *P* (the so-called pivot).
- Divide (rearrange) the array, such that P is at its final position, left of P there are only elements ≤ P, and right of P only elements ≥ P.

$$\leq P \qquad P \qquad \geq P$$

- Conquer by calling quicksort recursively for the ranges left of P and right of P.
- Combine by doing nothing (recursive calls already lead to fully sorted array).

Quicksort: Algorithm

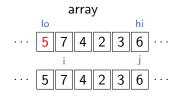
```
1 def sort(array):
      sort_aux(array, 0, len(array)-1)
2
3
4 def sort_aux(array, lo, hi):
      if hi <= lo:
5
           return
6
      choose_pivot_and_swap_it_to_lo(array, lo, hi)
7
      pivot_pos = partition(array, lo, hi)
8
      sort_aux(array, lo, pivot_pos - 1)
9
      sort_aux(array, pivot_pos + 1, hi)
10
```

How do we Choose the Pivot?

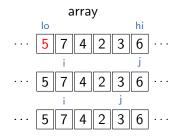
For the correctness of the algorithm, any choice is fine. (Why?) Example strategies:

- Naïve: Always use the first element.
- Median of Three: Use median of first, middle and last element.
- Randomized: Use a random element.

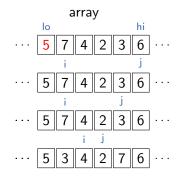
Good pivots separate the range into roughly equally-sized ranges.



Pivot is at position lo. Initialize i = lo + 1, j = hi

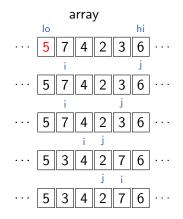


Pivot is at position lo. Initialize i = lo + 1, j = hi*i* to the right until element \geq pivot *j* to the left until element \leq pivot



 $\begin{array}{l} \mbox{Pivot is at position lo.}\\ \mbox{Initialize } i = \mbox{lo} + 1, j = \mbox{hi}\\ i \mbox{ to the right until element} \geq \mbox{pivot}\\ j \mbox{ to the left until element} \leq \mbox{pivot} \end{array}$

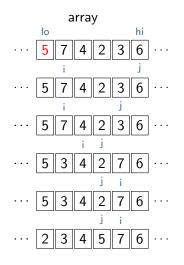
If
$$i < j$$
: swap elements, $i++$, $j--$



Pivot is at position lo. Initialize i = lo + 1, j = hi*i* to the right until element \geq pivot *j* to the left until element \leq pivot

If
$$i < j$$
: swap elements, $i++$, $j--$

i to the right until element \geq pivot *j* to the left until element \leq pivot



Pivot is at position lo. Initialize i = lo + 1, j = hi*i* to the right until element \geq pivot *j* to the left until element \leq pivot

If
$$i < j$$
: swap elements, $i++$, $j--$

i to the right until element \geq pivot *j* to the left until element \leq pivot

 $i \ge j$: swap pivot to position j

Done!

Quicksort: Partitioning

```
1 def partition(array, lo, hi):
2
       pivot = array[lo]
       i = 10 + 1
3
       i = hi
4
       while (True):
5
           while i < hi and array[i] < pivot:
6
               i += 1
7
           while array[j] > pivot:
8
               j -= 1
9
           if i \ge j:
10
               break
11
12
           array[i], array[j] = array[j], array[i]
13
           i, j = i + 1, j - 1
14
       array[lo], array[j] = array[j], array[lo]
15
16
       return j
```

Exercise

What is the content of array [6, 5, 7, 8, 3] after a call of partition for the entire range (from position 0 to 4)?

Partitioning: Variants

- partitioning performs Hoare's partitioning method.
 - Tony Hoare: British computer scientist, inventor of quicksort
- There is also Lomuto's partitioning:
 - Inferior to Hoare's method.
 - Three times more swaps on average.
 - Leads to bad running time if all elements are equal.
 - Since it is easier to explain and analyze, used in some teaching resources (e.g. Cormen et al. textbook).
- We only consider Hoare's method.

Quicksort: Running Time I

Best case: Pivot separates into equally-sized ranges.

- O(log₂ n) recursive calls
- Each has hi-lo key comparisons during partitioning.
- On a single recursion depth overall O(n) comparisons in partitioning.
- $\rightarrow O(n \log n)$

Quicksort: Running Time I

Best case: Pivot separates into equally-sized ranges.

- O(log₂ n) recursive calls
- Each has hi-lo key comparisons during partitioning.
- On a single recursion depth overall O(n) comparisons in partitioning.
- $\rightarrow O(n \log n)$

Worst case: Pivot always smallest or largest element.

- overall n-1 (nontrivial) recursive calls for length $n, n-1, \ldots, 2$.
- Each has hi-lo key comparisons during partitioning.
- $\rightarrow \Theta(n^2)$

Quicksort: Running Time II

Average case:

- Assumption: n different elements, each of the n! permutations has equal probability, random choice of pivot
- O(log n) recursive calls
- overall $O(n \log n)$
- $\blacksquare \approx 39\%$ slower than best case

Quicksort: Running Time II

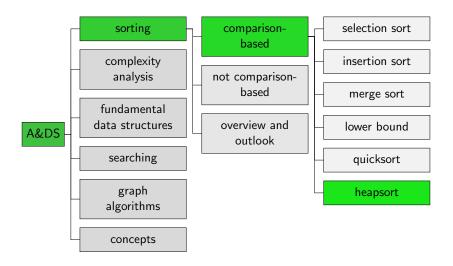
Average case:

- Assumption: n different elements, each of the n! permutations has equal probability, random choice of pivot
- O(log n) recursive calls
- overall $O(n \log n)$
- $\blacksquare \approx 39\%$ slower than best case

With a random choice of the pivot, the worst case is extremely unlikely. Therefore, quicksort is often considered an $O(n \log n)$ algorithm.

Heapsort

Content of the Course



Heapsort

- Heap: data structure that allows to find and remove the largest element quickly: find: Θ(1), remove: Θ(log n)
- Basic idea as in selection sort but from right to left: Successively swap the largest element to the end of the non-sorted range.
- We can represent the heap directly in the input sequence, so that heap sort only needs constant additional storage.
- The running time is linearithmic.
- We cover the details once we have introduced heaps.

Summary

Summary

- Quicksort is a divide-and-conquer approach that divides the range relative to a pivot element.
- In the worst case, quicksort has quadratic running time.
- In the average case, the running time is linearithmic.
- With a random choice of the pivot, the worst case is extremely unlikely.