
Algorithms and Data Structures
A11. Runtime Analysis: Solving Recurrences

Gabriele Röger

University of Basel

March 14, 2024

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 1 / 32



Algorithms and Data Structures
March 14, 2024 — A11. Runtime Analysis: Solving Recurrences

A11.1 Solving Recurrences

A11.2 Substitution Method

A11.3 Recursion-tree Method

A11.4 Master Theorem

A11.5 Floors and Ceilings?

A11.6 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 2 / 32



A11. Runtime Analysis: Solving Recurrences Solving Recurrences

A11.1 Solving Recurrences

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 3 / 32



A11. Runtime Analysis: Solving Recurrences Solving Recurrences

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 4 / 32



A11. Runtime Analysis: Solving Recurrences Solving Recurrences

Introduction

In Ch. A10, we derived (algorithmic) recurrences from
divide-and-conquer algorithms:

▶ T (m) = T (m/2) + Θ(m)
for merge sort.

▶ T (n) = 8T (n/2) + Θ(1)
for simple recursive matrix multiplication.

▶ T (n) = 7T (n/2) + Θ(n2)
for Strassen’s algorithm for matrix multiplication.

For the asymptotic running time, we want an expression that only
depends on the input size (and not recursively on T )!

How can we solve such recurrences?

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 5 / 32



A11. Runtime Analysis: Solving Recurrences Solving Recurrences

Approaches

▶ substitution method

▶ recursion-tree method

▶ master theorem
▶ Akra-Bazzi method

▶ Generalization of the master theorem.
▶ Not covered in this course.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 6 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

A11.2 Substitution Method

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 7 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

Substitution Method

1 Guess the form of the solution using symbolic constants.

2 Use mathematical induction to show that the solution works.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 8 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 9 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

Example: Top-down Merge Sort II
Guess Solution and Formulate Hypothesis

Guess: T (m) ∈ O(m log2m)

Hypothesis: T (m) ≤ cm log2m for all m ≥ m0

for some constants c ,m0 > 0 (taken care of later).

Let’s try the inductive step with this hypothesis.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 10 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Inductive Case)

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = 2T (m/2) + c ′m

≤ 2c(m/2) log2(m/2) + c ′m (induction hypothesis)

= cm log2(m)− cm log2 2 + c ′m

= cm log2(m)− cm + c ′m

≤ cm log2(m) if c > c ′

Inductive steps works if we constrain c to be sufficiently large
such that cm ≥ c ′m for all m ≥ 2m0

(with c ′ hidden constant from O(m)).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 11 / 32



A11. Runtime Analysis: Solving Recurrences Substitution Method

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Base Case)

Show that T (m) ≤ cm log2(m) for all m with m0 ≤ m < 2m0.
Consider m0 = 2.
▶ Let d = max{T (2),T (3)}

▶ T (2) ≤ d ≤ d2 log2 2
▶ T (3) ≤ d ≤ d3 log2 3

With c = max{c ′, d} it holds for all m ≥ 2 that

T (m) ≤ cm log2(m).

We have shown that T (m) ∈ O(m log2m).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 12 / 32



A11. Runtime Analysis: Solving Recurrences Recursion-tree Method

A11.3 Recursion-tree Method

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 13 / 32



A11. Runtime Analysis: Solving Recurrences Recursion-tree Method

Recursion-tree Method

In a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations.

Analyse the cost on each level of the tree and the depth of the tree
to get an idea of the overall running time.

Suitable for making a good guess (to be verified by induction).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 14 / 32



A11. Runtime Analysis: Solving Recurrences Recursion-tree Method

Example: Top-down Merge Sort I

Consider again m = 2k with k ∈ N>0

T (m) = 2T (m/2) + Θ(m)

cm

T(m/2) T(m/2)

cm

cm/2

T(m/4) T(m/4)

cm/2

T(m/4) T(m/4)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 15 / 32



A11. Runtime Analysis: Solving Recurrences Recursion-tree Method

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1) Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times
Total: Θ(m log2m)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 16 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

A11.4 Master Theorem

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 17 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Content of the Course

A&DS

sorting

complexity
analysis

asymptotic
notation

master theorem

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 18 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Recurrences

A common instantiation of the divide-and-conquer
algorithm scheme works as follows:

▶ For inputs of small size n < C , solve the problem directly.
▶ Otherwise:

1 Construct A smaller inputs of size n/B.
2 Recursively solve these inputs using the same algorithm.
3 Compute the result from the recursively computed results.

If 1.+3. take time f (n), the overall run-time for n > C
can be expressed as T (n) = A · T (n/B) + f (n).

▶ We call this a master recurrence.

▶ f (n) is called the driving function.

▶ We do not care about run-time for n < C
because it does not affect asymptotic analysis.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 19 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Recurrences – Examples

Reminder:

1 Construct A smaller inputs of size n/B.

2 Recursively solve these inputs using the same algorithm.

3 Compute the result from the recursively computed results.

master recurrence: T (n) = A · T (n/B) + f (n)

Examples:

▶ Merge sort: A = 2, B = 2, f (n) = Θ(n)

▶ Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 20 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Theorem

The theorem compares the asymptotic growth of the driving
function to the one of the watershed function nlogB A:

Theorem

Let A ≥ 1,B > 1 be constants and f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Let T
satisfy the master recurrence T (n) = A · T (n/B) + f (n). Then:

▶ If f (n) = O(nlogB A−ε) for some ε > 0,
then T (n) = Θ(nlogB A).

▶ If f (n) = Θ(nlogB A logk2 n) for some k ≥ 0,
then T (n) = Θ(nlogB A logk+1

2 n).

▶ If f (n) = Ω(nlogB A+ε) for some ε > 0 and
if Af (n/B) ≤ cf (n) for some c < 1 and all sufficiently large n,
then T (n) = Θ(f (n)).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 21 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Theorem: Intuition (Case 1)

f (n) = O(nlogB A−ε)

▶ Watershed function grows polynomially faster than the driving
function.

▶ Cost per level in recursion tree grows at least geometrically
from root to leaves.

▶ Cost of leaves dominates total cost of inner nodes.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 22 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Theorem: Intuition (Case 2)

f (n) = Θ(nlogB A logk2 n)

▶ logk2 n = (log2 n)
k

▶ Both functions grow at nearly the same asymptotic rates.

▶ Precisely: driving function only grows faster than the
watershed function by a factor of logk2 n.

▶ Each level of the tree costs approximately the same.

▶ With k = 0, the second case covers case f (n) = Θ(nlogB A).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 23 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Master Theorem: Intuition (Case 3)

f (n) = Ω(nlogB A+ε)

▶ Driving function grows polynomially faster than the watershed
function.

▶ Regularity condition Af (n/B) ≤ cf (n) is typically satisfied (no
big growth differences of driving function in different areas of
the recursion tree).

▶ Cost per level in recursion tree drops at least geometrically
from root to leaves.

▶ Cost of root dominates cost of other nodes in the recursion
tree.

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 24 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

▶ f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

▶ f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

▶ f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

▶ Case 1 f (n) = O(n1−ε) for some ε > 0? ⇝ No.

▶ Case 2 f (n) = Θ(n1 logk2 n) for some k? ⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 25 / 32



A11. Runtime Analysis: Solving Recurrences Master Theorem

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

▶ f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

▶ f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

▶ f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

▶ Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?
⇝ Yes, for instance with ε = 0.8! ⇝ T (n) = Θ(nlog2 7)

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 26 / 32



A11. Runtime Analysis: Solving Recurrences Floors and Ceilings?

A11.5 Floors and Ceilings?

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 27 / 32



A11. Runtime Analysis: Solving Recurrences Floors and Ceilings?

Merge Sort Revisited

We used T (m) = 2T (m/2) + Θ(m) as recurrence for merge sort.

If m = 5, we have one recursive call for 2 and one for 3 elements.

The precise recurrence for the running time is

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + Θ(m).

Does this make a difference for the asymptotic growth?

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 28 / 32



A11. Runtime Analysis: Solving Recurrences Floors and Ceilings?

Good News

Ignoring floors and ceilings does not generally affect the order of
growth of the solution of a divide-and-conquer recurrence.

The master theorem also holds for recurrences

T (n) = A′T (⌊n/B⌋)) + A′′T (⌈n/B⌉)) + f (n)

for some constant A′,A′′ ≥ 0 (set A := A′ + A′′).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 29 / 32



A11. Runtime Analysis: Solving Recurrences Floors and Ceilings?

Example: Merge Sort (Optional Material)
Inductive Case Revisited

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + c ′m

≤ c⌊m/2⌋ log2(⌊m/2⌋) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ c⌊m/2⌋ log2(⌈m/2⌉) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ cm log2(⌈m/2⌉) + c ′m (⌊m/2⌋+ ⌈m/2⌉ = m)

≤ cm log2((m + 1)/2) + c ′m (⌈m/2⌉ ≤ (m + 1)/2)

= cm log2(m + 1)− cm + c ′m

≤ cm log2m + cm/m − cm + c ′m (log2(m + 1) ≤ log2(m) +
1

m
)

= cm log2m + c − cm + c ′m

≤ cm log2m if c > 2c ′ and m ≥ 2

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 30 / 32



A11. Runtime Analysis: Solving Recurrences Summary

A11.6 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 31 / 32



A11. Runtime Analysis: Solving Recurrences Summary

Summary

▶ The substitution method is the most general one:
▶ Guess the running time (typically by substituting the recursive

term a few times).
▶ Prove by mathematical induction that the guess is correct.

▶ The recursion-tree method is good for quickly getting an
impression of a running time.

▶ The master theorem is not always applicable. If it is, it is the
quickest way to determine the running time.

▶ Top-down merge sort has linearithmic running time
Θ(m log2m).

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 32 / 32


	Solving Recurrences
	

	Substitution Method
	

	Recursion-tree Method
	

	Master Theorem
	

	Floors and Ceilings?
	

	Summary
	


