
Algorithms and Data Structures
A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Röger

University of Basel

March 14, 2024



Divide-and-Conquer Algorithms Recurrences Summary

Divide-and-Conquer Algorithms



Divide-and-Conquer Algorithms Recurrences Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms



Divide-and-Conquer Algorithms Recurrences Summary

Recap: Merge Sort

Sort input range with n elements:

n ≤ 1: nothing to do

n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges.
Conquer each of them by recursively sorting them.
Combine the sorted subranges to a fully sorted range.



Divide-and-Conquer Algorithms Recurrences Summary

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly
without recursing.

Recursive case: Otherwise

Divide the problem into one or more
subproblems that are smaller instances
of the same problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices

Square matrix An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 am2 · · · ann


Let A,B,C be n × n matrices. We want to compute C + A · B.

For i , j ∈ {1, . . . , n}: Update cij to cij +
∑n

k=1 aik · bkj .



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices

Square matrix An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 am2 · · · ann


Let A,B,C be n × n matrices. We want to compute C + A · B.

For i , j ∈ {1, . . . , n}: Update cij to cij +
∑n

k=1 aik · bkj .



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices

Square matrix An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 am2 · · · ann


Let A,B,C be n × n matrices. We want to compute C + A · B.

For i , j ∈ {1, . . . , n}: Update cij to cij +
∑n

k=1 aik · bkj .



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Direct Computation

1 def matrix_multiply(A, B, C, n):

2 for i in range(1,n+1): # i = 1,...,n

3 for j in range(1,n+1): # j = 1,...,n

4 for k in range(1,n+1): # k = 1,...,n

5 C[i][j] += A[i][k] * B[k][j]

Running time Θ(n3)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2k for some k ∈ N.

Idea: Divide each matrix into four n/2× n/2 matrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]

Can compute C = A · B as[
C11 C12

C21 C22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]
Eight n/2× n/2 multiplications and four n/2× n/2 additions



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2k for some k ∈ N.

Idea: Divide each matrix into four n/2× n/2 matrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]

Can compute C = A · B as[
C11 C12

C21 C22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]
Eight n/2× n/2 multiplications and four n/2× n/2 additions



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function matrix-multiply-recursive(A, B, C , n)
if n == 1 then

c11 = c11 + a11 · b11
return

partition A, B, and C into n/2× n/2 submatrices
A11,A12,A21,A22,B11, . . . ,B22,C11, . . . ,C22

(details omitted; takes constant time)
matrix-multiply-recursive(A11, B11, C11, n/2)
matrix-multiply-recursive(A11, B12, C12, n/2)
matrix-multiply-recursive(A21, B11, C21, n/2)
matrix-multiply-recursive(A21, B12, C22, n/2)
matrix-multiply-recursive(A12, B21, C11, n/2)
matrix-multiply-recursive(A12, B22, C12, n/2)
matrix-multiply-recursive(A22, B21, C21, n/2)
matrix-multiply-recursive(A22, B22, C22, n/2)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen’s Algorithm

The previous algorithm still has running time Θ(n3).

Strassen’s algorithm is similar but uses only 7 recursive calls.

Idea (with scalars): Compute x2 + y2 as (x + y)(x − y) with
2 additions, 1 multiplication instead of
2 multiplications, 1 addition

Computes the four submatrices C11,C12,C21,C22 with four
steps (next slide).



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B, C as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

Running time Θ(nlg 7) (with lg 7 ≈ 2.8073549 < 3)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B, C as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

Running time Θ(nlg 7) (with lg 7 ≈ 2.8073549 < 3)



Divide-and-Conquer Algorithms Recurrences Summary

Questions

Your Questions?

How can we analyze the running time of such algorithms?



Divide-and-Conquer Algorithms Recurrences Summary

Questions

Your Questions?

How can we analyze the running time of such algorithms?



Divide-and-Conquer Algorithms Recurrences Summary

Recurrences



Divide-and-Conquer Algorithms Recurrences Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms



Divide-and-Conquer Algorithms Recurrences Summary

Recurrences

A recurrence is a recursively defined function f : N0 → R where
for almost all n, the value f (n) is defined in terms of the values
f (m) for m < n.

Example (Fibonacci Series)

F (0) = 0 (1st base case)

F (1) = 1 (2nd base case)

F (n) = F (n − 2) + F (n − 1) for all n ≥ 2 (recursive case)

Recurrences occur naturally for the running time of
divide-and-conquer algorithms.



Divide-and-Conquer Algorithms Recurrences Summary

Example: Top-Down Merge Sort

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 sort_aux(array, tmp, lo, mid)

10 sort_aux(array, tmp, mid + 1, hi)

11 merge(array, tmp, lo, mid, hi)

Analysis for m = hi− lo + 1
c0 for lines 6–7
c1 for lines 6–8
c2m for merge step (takes linear time)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Top-Down Merge Sort

Assumption: n = 2k for some k ∈ N

Running time sort aux

T (1) = c0

T (m) = c1 + 2T (m/2) + c2m



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function matrix-multiply-recursive(A, B, C , n)
if n == 1 then

c11 = c11 + a11 · b11
return

partition A, B, and C into n/2× n/2 submatrices
A11,A12,A21,A22,B11, . . . ,B22,C11, . . . ,C22

(details omitted; takes constant time)
matrix-multiply-recursive(A11, B11, C11, n/2)
matrix-multiply-recursive(A11, B12, C12, n/2)
matrix-multiply-recursive(A21, B11, C21, n/2)
matrix-multiply-recursive(A21, B12, C22, n/2)
matrix-multiply-recursive(A12, B21, C11, n/2)
matrix-multiply-recursive(A12, B22, C12, n/2)
matrix-multiply-recursive(A22, B21, C21, n/2)
matrix-multiply-recursive(A22, B22, C22, n/2)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:

n = 2k for some k ∈ N,
c0 is the running time in case n = 1, and

c1 is the time for the partition into submatrices.

Specify a recurrence for the running time T (n) of the
algorithm.

Solution:

T (1) = c0

T (n) = c1 + 8T (n/2) for n > 1



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:

n = 2k for some k ∈ N,
c0 is the running time in case n = 1, and

c1 is the time for the partition into submatrices.

Specify a recurrence for the running time T (n) of the
algorithm.

Solution:

T (1) = c0

T (n) = c1 + 8T (n/2) for n > 1



Divide-and-Conquer Algorithms Recurrences Summary

Algorithmic Recurrences

A recurrence T (n) is algorithmic if, for every sufficiently large
n0 > 0, the following two properties hold:

1 For all n < n0, we have T (n) = Θ(1).

2 For all n ≥ n0, every path of recursion terminates in a defined
base case within a finite number of recursive invocations.



Divide-and-Conquer Algorithms Recurrences Summary

Convention

Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

For non-recursive aspects, we use Θ(·) (or O(·) if only
interested in upper bound).

Examples:

T (m) = 2T (m/2) + Θ(m)
for merge sort.

T (n) = 8T (n/2) + Θ(1)
for simple recursive matrix multiplication.



Divide-and-Conquer Algorithms Recurrences Summary

Convention

Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

For non-recursive aspects, we use Θ(·) (or O(·) if only
interested in upper bound).

Examples:

T (m) = 2T (m/2) + Θ(m)
for merge sort.

T (n) = 8T (n/2) + Θ(1)
for simple recursive matrix multiplication.



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B, C as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

T (n) = Θ(1) + Θ(n2) + 7T (n/2) + Θ(n2) = 7T (n/2) + Θ(n2)



Divide-and-Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B, C as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

T (n) = Θ(1) + Θ(n2) + 7T (n/2) + Θ(n2) = 7T (n/2) + Θ(n2)



Divide-and-Conquer Algorithms Recurrences Summary

Questions

Questions?



Divide-and-Conquer Algorithms Recurrences Summary

Summary



Divide-and-Conquer Algorithms Recurrences Summary

Summary

Divide-and-conquer algorithms divide the problem into smaller
problems of the same kind, solve them (typically recursively)
and combine their solution into a solution of the full problem.

Their running time can often easily be described with a
recurrence.


	Divide-and-Conquer Algorithms
	

	Recurrences
	

	Summary

