Algorithms and Data Structures
A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Roger

University of Basel

March 14, 2024

Divide-and-Conquer Algorithms

90000000000

Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms
00000000000

Content of the Course

— sorting

complexity
analysis

fundamental

-_ data structures

- searching

graph dynamic
algorithms programming

algorithms

Divide-and-Conquer Algorithms

00@00000000

Recap: Merge Sort

Sort input range with n elements:
m n < 1: nothing to do

m n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges.
Conquer each of them by recursively sorting them.
Combine the sorted subranges to a fully sorted range.

Divide-and-Conquer Algorithms

000e0000000

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly
without recursing.

Recursive case: Otherwise

Divide the problem into one or more
subproblems that are smaller instances
of the same problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

Divide-and-Conquer Algorithms
[ee]e]e] Telelelelele)

Example: Multiplication of Square Matrices

di1 da12 -+ din

, al ax -+ axp
Square matrix Apxp =

dnl dm2 *°° dnn

Divide-and-Conquer Algorithms ec Summar
0000®000000 000 00 oo

Example: Multiplication of Square Matrices

a1 412 -+ din
. a1 daxp -+ azp

Square matrix Apxp =
dnl dm2 *°° dnn

Let A, B, C be n x n matrices. We want to compute C + A - B.

Divide-and-Conquer Algorithms 3 Summar
0000®000000 © 00 00

Example: Multiplication of Square Matrices

a1 412 -+ din
. a1 daxp -+ azp

Square matrix Apxp =
dnl dm2 *°° dnn

Let A, B, C be n x n matrices. We want to compute C + A - B.
Fori,j € {1,...,n}: Update ¢jj to cjj + > _p_; aik - byj-

Example: Multiplication of Square Matrices

Direct Computation

1 def matrix_multiply(A, B, C, n):

2 for i in range(i,n+1): # ¢ = 1,...,n

3 for j in range(l,n+1): # 57 =1,...,n

4 for k in range(l,n+1): # k = 1,...,n
5 C[i]1[j1 += A[il[x] * B[k][j]

Running time ©(n%)

Divide-and-Conquer Algorithms Rect » Summar

0O00000e0000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2% for some k € N.

Idea: Divide each matrix into four n/2 x n/2 matrices:

Al A] [Bi1 B } [Ci1 G]
[A Ax Bx1 B C1

Divide-and-Conquer Algorithms

0O00000e0000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2% for some k € N.

Idea: Divide each matrix into four n/2 x n/2 matrices:

Al A Bi1 B } [Ci1 G]
[A Ax] [Bx1 B C1

Can compute C = A- B as

[G Go] _ [A1 Bii + A1 - B A Bio+ A - B]
G1 G Ap1 - Bi1+ A2 - B Api - Bio + A - B

Eight n/2 x n/2 multiplications and four n/2 x n/2 additions

Divide-and-Conquer Algorithms 3) Summary

00000008000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + a1 - big
return
partition A, B, and C into n/2 x n/2 submatrices
A11,A12,As1, A2, Br1, ..., B, i, ..., O
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A11, Bi1, Ci1, n/2
MATRIX-MULTIPLY-RECURSIVE(A11, Bi2, Ci2, n/2
MATRIX-MULTIPLY-RECURSIVE(A21, Bi1, Co1, n/2
MATRIX-MULTIPLY-RECURSIVE(A21, Bi2, Co2, n/2
MATRIX-MULTIPLY-RECURSIVE(A12, Bo1, Ci1, n/2
MATRIX-MULTIPLY-RECURSIVE(A12, B, Ci2, n/2
MATRIX-MULTIPLY-RECURSIVE(A22, Bo1, Co1, n/2
MATRIX-MULTIPLY-RECURSIVE(A22, B2, Co2, n/2

— N e e e N N

Divide-and-Conquer Algorithms

00000000800

Example: Multiplication of Square Matrices

Strassen’s Algorithm

m The previous algorithm still has running time ©(n3).
m Strassen’s algorithm is similar but uses only 7 recursive calls.
m Idea (with scalars): Compute x? + y? as (x + y)(x — y) with

2 additions, 1 multiplication instead of
2 multiplications, 1 addition

m Computes the four submatrices Ci1, Cio, Co1, Coo with four
steps (next slide).

Divide-and-Conquer Algorithms N) Summary

0000000000

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices P1,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.

© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1,..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

Divide-and-Conquer Algorithms

Summary

0000000000

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices P1,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.

© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1,..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

Running time ©(n'87) (with Ig7 ~ 2.8073549 < 3)

Divide-and-Conquer Algorithms Rect » Summar

000000000 0e

Questions

N

00

~

Your Questions?

Divide-and-Conquer Algorithms
0000000000 e

Questions

N

00

~

Your Questions?

How can we analyze the running time of such algorithms?

Recurrences
©0000000000

Recurrences

Recurrences
0®000000000

Content of the Course

— sorting
| fundamental
- data structures
B graph B dynamic
algorithms programming

algorithms

quer Algorithms Recurrences

00e00000000

Recurrences

A recurrence is a recursively defined function f : Ng — R where
for almost all n, the value f(n) is defined in terms of the values
f(m) for m < n.

Example (Fibonacci Series)

F(0)=0 (1st base case)
1 (2nd base case)
F(n)=F(n—2)4+ F(n—1)forall n>2 (recursive case)

Recurrences occur naturally for the running time of
divide-and-conquer algorithms.

quer Algorithms Recurrences Summar

000@0000000

Example: Top-Down Merge Sort

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = 1o + (hi - 1lo) // 2
sort_aux(array, tmp, lo, mid)
10 sort_aux(array, tmp, mid + 1, hi)
11 merge (array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Analysis for m=hi—lo+1

¢o for lines 67

c1 for lines 6-8

com for merge step (takes linear time)

r Algorithms Recurrences Summar
0000e000000 [e]e)

Example: Top-Down Merge Sort

Assumption: n = 2X for some k € N

Running time sort_aux
B T(1)=c
B T(m)=ca+2T(m/2)+ com

Conquer Algorithms Recurrences Summary

00000e00000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + a1 - big
return
partition A, B, and C into n/2 x n/2 submatrices
A11,A12,As1, A2, Br1, ..., B, i, ..., O
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A11, Bi1, Ci1, n/2
MATRIX-MULTIPLY-RECURSIVE(A11, Bi2, Ci2, n/2
MATRIX-MULTIPLY-RECURSIVE(A21, Bi1, Co1, n/2
MATRIX-MULTIPLY-RECURSIVE(A21, Bi2, Co2, n/2
MATRIX-MULTIPLY-RECURSIVE(A12, Bo1, Ci1, n/2
MATRIX-MULTIPLY-RECURSIVE(A12, B, Ci2, n/2
MATRIX-MULTIPLY-RECURSIVE(A22, Bo1, Co1, n/2
MATRIX-MULTIPLY-RECURSIVE(A22, B2, Co2, n/2

— N e e e N N

Conquer Algorithms Recurrences Summar

00000080000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:

m n =2k for some k € N,

B ¢ is the running time in case n =1, and)
m ¢ is the time for the partition into submatrices. ’%

Specify a recurrence for the running time T(n) of the
algorithm.

Conquer Algorithms Recurrences Summar

00000080000

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:

m n =2k for some k € N,

B ¢ is the running time in case n =1, and)
m ¢ is the time for the partition into submatrices. 5%

Specify a recurrence for the running time T(n) of the
algorithm.

Solution:

T(l) =0
T(n)=c +8T(n/2) forn>1

er Algorithms Recurrences

00000008000

Algorithmic Recurrences

A recurrence T(n) is algorithmic if, for every sufficiently large
ng > 0, the following two properties hold:
@ For all n < ng, we have T(n) = ©(1).

@ For all n > ng, every path of recursion terminates in a defined
base case within a finite number of recursive invocations.

r Algorithms Recurrences

00000000800

Convention

m Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

m For non-recursive aspects, we use O(-) (or O() if only
interested in upper bound).

er Algorithms Recurrences

00000000800

Convention

m Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

m For non-recursive aspects, we use O(-) (or O() if only
interested in upper bound).

Examples:
m T(m)=2T(m/2)+ ©(m)
for merge sort.
m T(n)=8T(n/2)+O(1)
for simple recursive matrix multiplication.

00000000080

Conquer Algorithms Recurrences Summary

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices P1,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.

© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1,..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

Conquer Algorithms Recurrences

00000000080

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices P1,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.

© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1,..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

T(n)=0(1)+06(n?) +7T(n/2) +O(n?) =7T(n/2) + ©(n?)

Recurrences

0000000000 e

Questions

o

~

Questions?

Summarn
0

Summary

Summary
oe

er Algorithms

Summary

m Divide-and-conquer algorithms divide the problem into smaller
problems of the same kind, solve them (typically recursively)
and combine their solution into a solution of the full problem.

m Their running time can often easily be described with a
recurrence.

	Divide-and-Conquer Algorithms
	

	Recurrences
	

	Summary

