Algorithms and Data Structures

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Röger

University of Basel

March 14, 2024

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

G. Röger (University of Basel) Algorithms and Data Structures March 14, 2024 A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms Content of the Course sorting complexity analysis fundamental data structures A&DS divide & searching conquer dynamic graph algorithms programming greedy concepts algorithms March 14, 2024 G. Röger (University of Basel) Algorithms and Data Structures

Algorithms and Data Structures

A10.2 Recurrences

March 14, 2024 — A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

G. Röger (University of Basel) Algorithms and Data Structures

Recap: Merge Sort

Sort input range with *n* elements:

ightharpoonup n < 1: nothing to do

ightharpoonup n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges. Conquer each of them by recursively sorting them. Combine the sorted subranges to a fully sorted range.

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly without recursing.

Recursive case: Otherwise

Divide the problem into one or more subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original problem.

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Square matrix
$$A_{n \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{nn} \end{bmatrix}$$

Let A, B, C be $n \times n$ matrices. We want to compute $C + A \cdot B$.

For $i, j \in \{1, \dots, n\}$: Update c_{ij} to $c_{ij} + \sum_{k=1}^{n} a_{ik} \cdot b_{ki}$.

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices **Direct Computation**

```
1 def matrix_multiply(A, B, C, n):
     for i in range(1,n+1): # i = 1,...,n
         for j in range(1,n+1): # j = 1,...,n
             for k in range(1,n+1): # k = 1,...,n
                 C[i][j] += A[i][k] * B[k][j]
```

Running time $\Theta(n^3)$

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

Assumption: $n = 2^k$ for some $k \in \mathbb{N}$.

Idea: Divide each matrix into four $n/2 \times n/2$ matrices:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

Can compute $C = A \cdot B$ as

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}$$

Eight $n/2 \times n/2$ multiplications and four $n/2 \times n/2$ additions

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

A10. Runtime Analysis: Divide-and-Conquer Algorithms

```
function MATRIX-MULTIPLY-RECURSIVE (A, B, C, n)
   if n == 1 then
        c_{11} = c_{11} + a_{11} \cdot b_{11}
        return
   partition A, B, and C into n/2 \times n/2 submatrices
         A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, \dots, B_{22}, C_{11}, \dots, C_{22}
         (details omitted: takes constant time)
   MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}, C_{11}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12}, C_{12}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11}, C_{21}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{12}, C_{22}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21}, C_{11}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22}, C_{12}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21}, C_{21}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22}, C_{22}, n/2)
```

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices Strassen's Algorithm

- ▶ The previous algorithm still has running time $\Theta(n^3)$.
- ▶ Strassen's algorithm is similar but uses only 7 recursive calls.
- ldea (with scalars): Compute $x^2 + y^2$ as (x + y)(x y) with 2 additions, 1 multiplication instead of 2 multiplications, 1 addition
- \triangleright Computes the four submatrices C_{11} , C_{12} , C_{21} , C_{22} with four steps (next slide).

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices Strassen's Algorithm (Sketch)

- \bigcirc If *n* is 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A. B. C as in MATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
- 2 Create $n/2 \times n/2$ matrices S_1, S_2, \ldots, S_{10} , each of which is the sum or difference of two submatrices from step 1. Create and zero the entries of seven $n/2 \times n/2$ matrices P_1, \dots, P_7 to hold seven matrix products (next step). All 17 matrices can be created/initialized in $\Theta(n^2)$ time.
- **3** Recursively compute each of the seven products P_1, \ldots, P_7 .
- **1** Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_i matrices. This takes $\Theta(n^2)$ time.

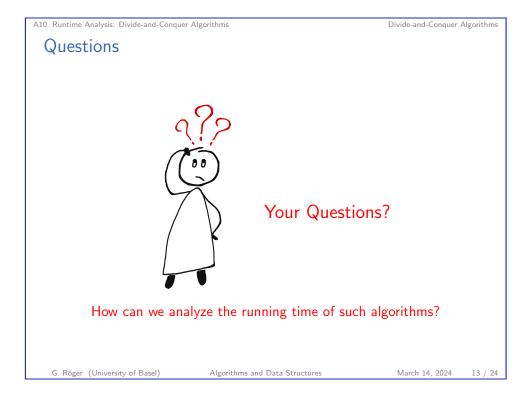
Running time $\Theta(n^{\lg 7})$ (with $\lg 7 \approx 2.8073549 < 3$)

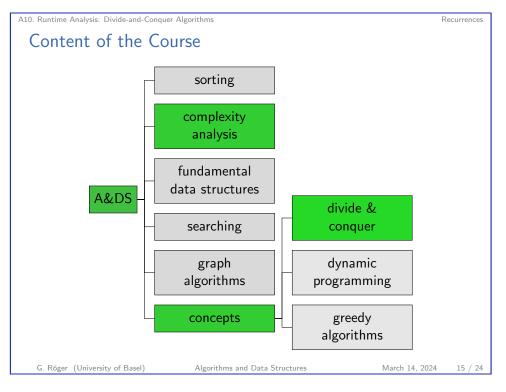
G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

G. Röger (University of Basel)





A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

A10.2 Recurrences

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Recurrences

Recurrences

A recurrence is a recursively defined function $f: \mathbb{N}_0 \to \mathbb{R}$ where for almost all n, the value f(n) is defined in terms of the values f(m) for m < n.

Example (Fibonacci Series)

$$F(0) = 0$$

(1st base case)

$$F(1) = 1$$

(2nd base case)

$$F(n) = F(n-2) + F(n-1)$$
 for all $n \ge 2$ (recursive case)

Recurrences occur naturally for the running time of divide-and-conquer algorithms.

G. Röger (University of Basel)

Algorithms and Data Structures

Example: Top-Down Merge Sort

```
1 def sort(array):
       tmp = [0] * len(array) # [0,...,0] with same size as array
       sort_aux(array, tmp, 0, len(array) - 1)
5 def sort_aux(array, tmp, lo, hi):
       if hi <= lo:
          return
       mid = lo + (hi - lo) // 2
       sort_aux(array, tmp, lo, mid)
       sort_aux(array, tmp, mid + 1, hi)
10
      merge(array, tmp, lo, mid, hi)
11
```

Analysis for m = hi - lo + 1

- co for lines 6-7
- c₁ for lines 6–8
- c₂m for merge step (takes linear time)

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

Example: Top-Down Merge Sort

Assumption: $n = 2^k$ for some $k \in \mathbb{N}$

Running time sort_aux

- $T(1) = c_0$
- $T(m) = c_1 + 2T(m/2) + c_2 m$

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

```
function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
    if n == 1 then
        c_{11} = c_{11} + a_{11} \cdot b_{11}
        return
    partition A, B, and C into n/2 \times n/2 submatrices
         A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, \dots, B_{22}, C_{11}, \dots, C_{22}
         (details omitted: takes constant time)
    MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}, C_{11}, n/2)
```

MATRIX-MULTIPLY-RECURSIVE $(A_{11}, B_{12}, C_{12}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{21}, B_{11}, C_{21}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{21}, B_{12}, C_{22}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{12}, B_{21}, C_{11}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{12}, B_{22}, C_{12}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{22}, B_{21}, C_{21}, n/2)$

MATRIX-MULTIPLY-RECURSIVE $(A_{22}, B_{22}, C_{22}, n/2)$

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

G. Röger (University of Basel)

Example: Multiplication of Square Matrices A Simple Divide-and-Conquer Algorithm

Assumptions:

 $ightharpoonup n=2^k$ for some $k\in\mathbb{N}$.

A10. Runtime Analysis: Divide-and-Conquer Algorithms

- $ightharpoonup c_0$ is the running time in case n=1, and
- $ightharpoonup c_1$ is the time for the partition into submatrices.

Specify a recurrence for the running time T(n) of the algorithm.

Solution:

$$T(1) = c_0$$

 $T(n) = c_1 + 8T(n/2)$ for $n > 1$

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Algorithmic Recurrences

A recurrence T(n) is algorithmic if, for every sufficiently large $n_0 > 0$, the following two properties hold:

- For all $n < n_0$, we have $T(n) = \Theta(1)$.
- 2 For all $n \ge n_0$, every path of recursion terminates in a defined base case within a finite number of recursive invocations.

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Convention

- ▶ Whenever a recurrence is stated without an explicit base case, we assume that the recurrence is algorithmic.
- ▶ For non-recursive aspects, we use $\Theta(\cdot)$ (or $O(\cdot)$ if only interested in upper bound).

Examples:

- $ightharpoonup T(m) = T(m/2) + \Theta(m)$ for merge sort.
- ► $T(n) = 8T(n/2) + \Theta(1)$ for simple recursive matrix multiplication.

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

22 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices Strassen's Algorithm (Sketch)

- If *n* is 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A, B, C as in MATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
- ② Create $n/2 \times n/2$ matrices S_1, S_2, \dots, S_{10} , each of which is the sum or difference of two submatrices from step 1. Create and zero the entries of seven $n/2 \times n/2$ matrices P_1, \dots, P_7 to hold seven matrix products (next step). All 17 matrices can be created/initialized in $\Theta(n^2)$ time.
- **3** Recursively compute each of the seven products P_1, \ldots, P_7 .
- **1** Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_i matrices. This takes $\Theta(n^2)$ time.

$$T(n) = \Theta(1) + \Theta(n^2) + 7T(n/2) + \Theta(n^2) = 7T(n/2) + \Theta(n^2)$$

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Recurrences

Summary

- ▶ Divide-and-conquer algorithms divide the problem into smaller problems of the same kind, solve them (typically recursively) and combine their solution into a solution of the full problem.
- ▶ Their running time can often easily be described with a recurrence.

G. Röger (University of Basel)

Algorithms and Data Structures

March 14, 2024

G. Röger (University of Basel)

Algorithms and Data Structures