Algorithms and Data Structures
A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Roger
University of Basel

March 14, 2024

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 1/24

Algorithms and Data Structures
March 14, 2024 — A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

A10.2 Recurrences

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 2 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer
Algorithms

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 3 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Content of the Course

= sorting

complexity
analysis

fundamental

- data structures

- searching

graph dynamic
algorithms programming

algorithms

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 4 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Recap: Merge Sort

Sort input range with n elements:
» n < 1: nothing to do
» n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges.
Conquer each of them by recursively sorting them.
Combine the sorted subranges to a fully sorted range.

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024 5 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly
without recursing.

Recursive case: Otherwise

Divide the problem into one or more
subproblems that are smaller instances
of the same problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024 6 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

a1 a2 - an
. a1 a2 - ap

Square matrix Apxn =
anl am2 - @ann

Let A, B, C be n x n matrices. We want to compute C + A- B.
For i,j € {1,...,n}: Update ¢ to ¢;j + > }_; aik - bkj.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 7/ 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Direct Computation

1 def matrix_multiply(A, B, C, n):

2 for i in range(i,n+1): # 7 = 1,...,n

3 for j in range(l,n+1): # 7 = 1,...,n

4 for k in range(i,n+1): # k =1,...,n
5 C[il[j]1 += A[il[k] * B[k][j]

Running time ©(n?)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 8 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2 for some k € N.

Idea: Divide each matrix into four n/2 x n/2 matrices:

A:[All A12:| B:[BH 512] C:|:C11 C12]

Axi Ax Bo1 Ba G1 G

Can compute C = A- B as

[G G2] _ [A11 - Bi1 + A2 - Bor Awr - Bio + A1z - By }
1 Aol - Bi1 + A - Bor Apr - Bio+ Ax - B

Eight n/2 x n/2 multiplications and four n/2 x n/2 additions

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + an - bi
return
partition A, B, and C into n/2 x n/2 submatrices
A11, A1z, A1, A2, Bi1, ..., B2, Ci, .., G2
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A11, B11, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A11, Bi2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(Ap1, Bi1, (o1, n/2)
MATRIX-MULTIPLY-RECURSIVE(Ap1, B2, Co2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, Ba1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, B2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A, Ba1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A, B, Co2, n/2)

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Strassen’s Algorithm

» The previous algorithm still has running time ©(n®).
> Strassen's algorithm is similar but uses only 7 recursive calls.

> ldea (with scalars): Compute x% + y? as (x + y)(x — y) with
2 additions, 1 multiplication instead of
2 multiplications, 1 addition

» Computes the four submatrices Ci1, Cio, Co1, Cop with four
steps (next slide).

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

O If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices 51, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices Pi,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created /initialized in ©(n?) time.
© Recursively compute each of the seven products Py, ..., Pr.

@ Update the four submatrices Ci1, ..., (o by adding or
subtracting various P; matrices. This takes ©(n?) time.

Running time ©(n'87) (with Ig7 ~ 2.8073549 < 3)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Questions

N

00

~

Your Questions?

How can we analyze the running time of such algorithms?

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024 13 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Content of the Course

— sorting
fundamental
- data structures
- searching
graph dynamic
algorithms programming
algorithms
G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 15 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences
G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 14 / 24
A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Recurrences

A recurrence is a recursively defined function f : Ny — R where
for almost all n, the value f(n) is defined in terms of the values
f(m) for m < n.

Example (Fibonacci Series)

F(0)=0 (1st base case)
F(1)=1 (2nd base case)
F(n)=F(n—2)+ F(n—1) forall n>2 (recursive case)

Recurrences occur naturally for the running time of
divide-and-conquer algorithms.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

16 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Example: Top-Down Merge Sort

Recurrences

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1o0) // 2
sort_aux(array, tmp, lo, mid)
10 sort_aux(array, tmp, mid + 1, hi)
11 merge(array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Analysis for m=hi —lo+1

co for lines 6-7

¢ for lines 6-8

com for merge step (takes linear time)

March 14, 2024

G. Réger (University of Basel) Algorithms and Data Structures

17 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Top-Down Merge Sort

Assumption: n = 2k for some k € N

Running time sort_aux
> T(].) = Q
> T(m)=c +2T(m/2)+ c;m

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024 18 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + a - bu
return
partition A, B, and C into n/2 x n/2 submatrices
A11,A12, A1, A2, B11, ..., B2, C11, ..., (2
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A;1, B11, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A;1, Bi2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(Ap1, B11, (o1, n/2)
MATRIX-MULTIPLY-RECURSIVE(Ap1, B2, Co2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, Bo1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, B2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A22, Ba1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A, B, Co2, n/2)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

Recurrences

19 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:
» n =2k for some k € N,
P (g is the running time in case n =1, and

P> ¢ is the time for the partition into submatrices.

Specify a recurrence for the running time T(n) of the
algorithm.

Solution:

T(1) =
T(n)=c1+8T(n/2) forn>1

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 20 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Algorithmic Recurrences

A recurrence T(n) is algorithmic if, for every sufficiently large
ng > 0, the following two properties hold:

@ For all n < ng, we have T(n) = O(1).

@ For all n > ng, every path of recursion terminates in a defined
base case within a finite number of recursive invocations.

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Convention

» Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

» For non-recursive aspects, we use ©(-) (or O(-) if only
interested in upper bound).

Examples:
» T(m)=2T(m/2)+ ©(m)
for merge sort.
» T(n)=8T(n/2)+ O(1)
for simple recursive matrix multiplication.

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

O If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices 51,5z, ..., Si0, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices Pi,..., P;
to hold seven matrix products (next step).

All 17 matrices can be created /initialized in ©(n?) time.
© Recursively compute each of the seven products Py, ..., Pr.

@ Update the four submatrices Ci1, ..., Coo by adding or
subtracting various P; matrices. This takes ©(n?) time.

T(n) =0(1) +O(n?) +7T(n/2) + O(n?) = 7T(n/2) + O(n?)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

G. Réger (University of Basel) Algorithms and Data Structures March 14, 2024 22 / 24
A10. Runtime Analysis: Divide-and-Conquer Algorithms Summary
Summary

» Divide-and-conquer algorithms divide the problem into smaller
problems of the same kind, solve them (typically recursively)
and combine their solution into a solution of the full problem.

» Their running time can often easily be described with a
recurrence.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 24 | 24

	Divide-and-Conquer Algorithms
	

	Recurrences
	

	Summary

