Algorithms and Data Structures
A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Roger

University of Basel

March 14, 2024

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 1/24

Algorithms and Data Structures
March 14, 2024 — A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

A10.2 Recurrences

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 2 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer
Algorithms

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 3 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Content of the Course

— sorting

complexity
analysis

fundamental

- data structures

— searching

graph dynamic
algorithms programming

algorithms

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 4 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Recap: Merge Sort

Sort input range with n elements:
» n < 1: nothing to do

> n > 1: proceed as follows:
Divide the range into two roughly equally-sized ranges.

Conquer each of them by recursively sorting them.
Combine the sorted subranges to a fully sorted range.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 5 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly
without recursing.
Recursive case: Otherwise
Divide the problem into one or more

subproblems that are smaller instances
of the same problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

6 /

A10. Runtime Analysis: Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Divide-and-Conquer Algorithms

a1 d12 -+ din
. a1 a2 -+ axp

Square matrix Apxp =
anl am2 - dnpn

Let A, B, C be n x n matrices. We want to compute C + A- B.

For i,j € {1,...,n}: Update ¢; to cjj + > p_; aik - bij.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 7/

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Direct Computation

1 def matrix_multiply(A, B, C, n):

2 for i in range(l,n+1): # 7 = 1,...,n

3 for j in range(l,n+l1): # 57 =1,...,n

4 for k in range(l,n+1): # k = 1,...,n
5 C[i]1[j1 += A[il[x] * B[k][j]

Running time ©(n%)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

8 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2% for some k € N.

Idea: Divide each matrix into four n/2 x n/2 matrices:

Al A] [Bi1 B } [Ci1 G2]
|: A21 A22 821 B22

Can compute C=A- B as

[Cii G2] _ [A11- Bii + A1 - Bor A Bio + A - B]
G1 G Ap1 - Bi1 + A2 - Bt Api - Bio + Ax - B

Eight n/2 x n/2 multiplications and four n/2 x n/2 additions

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 9 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + a1 - big
return
partition A, B, and C into n/2 x n/2 submatrices
A11, A12,As1, A2, Br1, ..., B, Cig,y .., G2
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A;11, Bi1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A11, Bi2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A21, Bi1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A21, B2, Co2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, Bo1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, B2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A22, Bo1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A22, By, Co2, n/2)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 10 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Strassen’s Algorithm

» The previous algorithm still has running time ©(n?).
> Strassen’s algorithm is similar but uses only 7 recursive calls.

> Idea (with scalars): Compute x? + y? as (x + y)(x — y) with
2 additions, 1 multiplication instead of
2 multiplications, 1 addition

» Computes the four submatrices Ci1, Cip, Co1, Cop with four
steps (next slide).

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 11 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices Py,..., Py
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.
© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1, ..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

Running time ©(n'87) (with Ig7 ~ 2.8073549 < 3)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 12

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Questions

N

00

~

Your Questions?

How can we analyze the running time of such algorithms?

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 13 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

A10.2 Recurrences

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 14 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Content of the Course

— sorting
| fundamental
- data structures
— searching
B graph B dynamic
algorithms programming
algorithms

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 15 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Recurrences

A recurrence is a recursively defined function f : Ng — R where
for almost all n, the value f(n) is defined in terms of the values
f(m) for m < n.

Example (Fibonacci Series)

F(0)
F(1) (2nd base case)
F(n)=F(n—2)4+ F(n—1)forall n>2 (recursive case)

Il
o

(1st base case)

I
—

Recurrences occur naturally for the running time of
divide-and-conquer algorithms.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 16 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Top-Down Merge Sort

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2
sort_aux(array, tmp, lo, mid)
10 sort_aux(array, tmp, mid + 1, hi)
11 merge(array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Analysis for m=hi—lo+1

¢g for lines 6-7

c1 for lines 6-8

com for merge step (takes linear time)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 17 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Top-Down Merge Sort

Assumption: n = 2¥ for some k € N

Running time sort_aux
> T(1) =<
> T(m)=c+2T(m/2)+ com

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 18 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
if n==1 then
c11 = c11 + a1 - big
return
partition A, B, and C into n/2 x n/2 submatrices
A11, A12,As1, A2, Br1, ..., B, Cig,y .., G2
(details omitted; takes constant time)
MATRIX-MULTIPLY-RECURSIVE(A;11, Bi1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A11, Bi2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A21, Bi1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A21, B2, Co2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, Bo1, Ci1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A12, B2, Ci2, n/2)
MATRIX-MULTIPLY-RECURSIVE(A22, Bo1, Co1, n/2)
MATRIX-MULTIPLY-RECURSIVE(A22, By, Co2, n/2)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 19 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:
» n =2k for some k € N,

P (g is the running time in case n =1, and =4
» ¢ is the time for the partition into submatrices. ’Q

Specify a recurrence for the running time T(n) of the
algorithm.

Solution:

T(l) = Q
T(n)=c+8T(n/2) forn>1

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 20 / 24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Algorithmic Recurrences

A recurrence T(n) is algorithmic if, for every sufficiently large
ng > 0, the following two properties hold:

@ For all n < ng, we have T(n) = ©(1).

@ For all n > ng, every path of recursion terminates in a defined
base case within a finite number of recursive invocations.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 21 /24

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Convention

> Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

» For non-recursive aspects, we use ©(-) (or O(-) if only
interested in upper bound).

Examples:
» T(m)=2T(m/2)+ ©(m)
for merge sort.
> T(n)=8T(n/2)+O(1)

for simple recursive matrix multiplication.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 22

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
Strassen's Algorithm (Sketch)

©Q If nis 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE,
otherwise, partition matrices A, B, C as in
MATRIX-MULTIPLY-RECURSIVE. This takes ©(1) time.

@ Create n/2 x n/2 matrices S1, Sz, ..., S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2 x n/2 matrices Py,..., Py
to hold seven matrix products (next step).

All 17 matrices can be created/initialized in ©(n?) time.

© Recursively compute each of the seven products Py, ..., P7.

@ Update the four submatrices Ci1, ..., Gy by adding or
subtracting various P; matrices. This takes ©(n?) time.

T(n)=0(1)+0O(n?) +7T(n/2) +O(n?) =7T(n/2) + ©(n?)

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024

23

A10. Runtime Analysis: Divide-and-Conquer Algorithms Summary

Summary

» Divide-and-conquer algorithms divide the problem into smaller
problems of the same kind, solve them (typically recursively)
and combine their solution into a solution of the full problem.

» Their running time can often easily be described with a
recurrence.

G. Roger (University of Basel) Algorithms and Data Structures March 14, 2024 24 /24

	Divide-and-Conquer Algorithms
	

	Recurrences
	

	Summary

