Algorithms and Data Structures
 A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Röger

University of Basel
March 14, 2024

Algorithms and Data Structures

March 14, 2024 - A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

A10.2 Recurrences

A10.1 Divide-and-Conquer Algorithms

Content of the Course

Recap: Merge Sort

Sort input range with n elements:

- $n \leq 1$: nothing to do
- $n>1$: proceed as follows:

Divide the range into two roughly equally-sized ranges. Conquer each of them by recursively sorting them. Combine the sorted subranges to a fully sorted range.

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly without recursing.

Recursive case: Otherwise
Divide the problem into one or more subproblems that are smaller instances of the same problem.
Conquer the subproblems by solving them recursively.
Combine the subproblem solutions to form a solution to the original problem.

Example: Multiplication of Square Matrices

Square matrix $A_{n \times n}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{m 2} & \cdots & a_{n n}\end{array}\right]$
Let A, B, C be $n \times n$ matrices. We want to compute $C+A \cdot B$.
For $i, j \in\{1, \ldots, n\}:$ Update $c_{i j}$ to $c_{i j}+\sum_{k=1}^{n} a_{i k} \cdot b_{k j}$.

Example: Multiplication of Square Matrices

Direct Computation

```
def matrix_multiply(A, B, C, n):
    for i in range(1,n+1): # i = 1,...,n
        for j in range(1,n+1): # j = 1,...,n
                        for k in range(1,n+1): # k = 1,...,n
                        C[i][j] += A[i][k] * B[k][j]
```

Running time $\Theta\left(n^{3}\right)$

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

Assumption: $n=2^{k}$ for some $k \in \mathbb{N}$.
Idea: Divide each matrix into four $n / 2 \times n / 2$ matrices:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \quad C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Can compute $C=A \cdot B$ as

$$
\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\
A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}
\end{array}\right]
$$

Eight $n / 2 \times n / 2$ multiplications and four $n / 2 \times n / 2$ additions

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

function MATRIX-MULTIPLY-RECURSIVE (A, B, C, n)
if $n==1$ then

$$
c_{11}=c_{11}+a_{11} \cdot b_{11}
$$

return
partition A, B, and C into $n / 2 \times n / 2$ submatrices
$A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, \ldots, B_{22}, C_{11}, \ldots, C_{22}$
(details omitted; takes constant time)
matrix-multiply-Recursive $\left(A_{11}, B_{11}, C_{11}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{11}, B_{12}, C_{12}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{21}, B_{11}, C_{21}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{21}, B_{12}, C_{22}, n / 2\right)$
matrix-multiply-RECURSIVE $\left(A_{12}, B_{21}, C_{11}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{12}, B_{22}, C_{12}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{22}, B_{21}, C_{21}, n / 2\right)$
mATRIX-MULTIPLY-RECURSIVE $\left(A_{22}, B_{22}, C_{22}, n / 2\right)$

Example: Multiplication of Square Matrices

Strassen's Algorithm

- The previous algorithm still has running time $\Theta\left(n^{3}\right)$.
- Strassen's algorithm is similar but uses only 7 recursive calls.
- Idea (with scalars): Compute $x^{2}+y^{2}$ as $(x+y)(x-y)$ with 2 additions, 1 multiplication instead of 2 multiplications, 1 addition
- Computes the four submatrices $C_{11}, C_{12}, C_{21}, C_{22}$ with four steps (next slide).

Example: Multiplication of Square Matrices

Strassen's Algorithm (Sketch)

(1) If n is 1 , proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A, B, C as in MATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
(2) Create $n / 2 \times n / 2$ matrices $S_{1}, S_{2}, \ldots, S_{10}$, each of which is the sum or difference of two submatrices from step 1 . Create and zero the entries of seven $n / 2 \times n / 2$ matrices P_{1}, \ldots, P_{7} to hold seven matrix products (next step).
All 17 matrices can be created/initialized in $\Theta\left(n^{2}\right)$ time.
(3) Recursively compute each of the seven products P_{1}, \ldots, P_{7}.
(9) Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_{i} matrices. This takes $\Theta\left(n^{2}\right)$ time.
Running time $\Theta\left(n^{\lg 7}\right)$ (with $\lg 7 \approx 2.8073549<3$)

Questions

Your Questions?

How can we analyze the running time of such algorithms?

A10.2 Recurrences

Content of the Course

Recurrences

A recurrence is a recursively defined function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ where for almost all n, the value $f(n)$ is defined in terms of the values $f(m)$ for $m<n$.

Example (Fibonacci Series)

$$
\begin{array}{ll}
F(0)=0 & \text { (1st base case) } \\
F(1)=1 & \text { (2nd base case) } \\
F(n)=F(n-2)+F(n-1) \text { for all } n \geq 2 & \text { (recursive case) }
\end{array}
$$

Recurrences occur naturally for the running time of divide-and-conquer algorithms.

Example: Top-Down Merge Sort

```
def sort(array):
    tmp = [0] * len(array) # [0,...,0] with same size as array
    sort_aux(array, tmp, 0, len(array) - 1)
def sort_aux(array, tmp, lo, hi):
    if hi <= lo:
        return
    mid = lo + (hi - lo) // 2
    sort_aux(array, tmp, lo, mid)
    sort_aux(array, tmp, mid + 1, hi)
    merge(array, tmp, lo, mid, hi)
```

Analysis for $m=\mathrm{hi}-\mathrm{lo}+1$
c_{0} for lines 6-7
c_{1} for lines 6-8
$c_{2} m$ for merge step (takes linear time)

Example: Top-Down Merge Sort

Assumption: $n=2^{k}$ for some $k \in \mathbb{N}$
Running time sort_aux

- $T(1)=c_{0}$
- $T(m)=c_{1}+2 T(m / 2)+c_{2} m$

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

function matrix-multiply-RECURSIVE (A, B, C, n)
if $n==1$ then

$$
c_{11}=c_{11}+a_{11} \cdot b_{11}
$$

return
partition A, B, and C into $n / 2 \times n / 2$ submatrices
$A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, \ldots, B_{22}, C_{11}, \ldots, C_{22}$
(details omitted; takes constant time)
mATRIX-MULTIPLY-RECURSIVE $\left(A_{11}, B_{11}, C_{11}, n / 2\right)$
mATRIX-MULTIPLY-RECURSIVE $\left(A_{11}, B_{12}, C_{12}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{21}, B_{11}, C_{21}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{21}, B_{12}, C_{22}, n / 2\right)$
matrix-multiply-RECURSIVE $\left(A_{12}, B_{21}, C_{11}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{12}, B_{22}, C_{12}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{22}, B_{21}, C_{21}, n / 2\right)$
MATRIX-MULTIPLY-RECURSIVE $\left(A_{22}, B_{22}, C_{22}, n / 2\right)$

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

Assumptions:

- $n=2^{k}$ for some $k \in \mathbb{N}$,
- c_{0} is the running time in case $n=1$, and
c_{1} is the time for the partition into submatrices.
Specify a recurrence for the running time $T(n)$ of the
 algorithm.

Solution:

$$
\begin{aligned}
& T(1)=c_{0} \\
& T(n)=c_{1}+8 T(n / 2) \quad \text { for } n>1
\end{aligned}
$$

Algorithmic Recurrences

A recurrence $T(n)$ is algorithmic if, for every sufficiently large $n_{0}>0$, the following two properties hold:
(1) For all $n<n_{0}$, we have $T(n)=\Theta(1)$.
(2) For all $n \geq n_{0}$, every path of recursion terminates in a defined base case within a finite number of recursive invocations.

Convention

- Whenever a recurrence is stated without an explicit base case, we assume that the recurrence is algorithmic.
- For non-recursive aspects, we use $\Theta(\cdot)$ (or $O(\cdot)$ if only interested in upper bound).

Examples:

- $T(m)=T(m / 2)+\Theta(m)$ for merge sort.
- $T(n)=8 T(n / 2)+\Theta(1)$ for simple recursive matrix multiplication.

Example: Multiplication of Square Matrices

Strassen's Algorithm (Sketch)

(1) If n is 1 , proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A, B, C as in mATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
(2) Create $n / 2 \times n / 2$ matrices $S_{1}, S_{2}, \ldots, S_{10}$, each of which is the sum or difference of two submatrices from step 1 . Create and zero the entries of seven $n / 2 \times n / 2$ matrices P_{1}, \ldots, P_{7} to hold seven matrix products (next step).
All 17 matrices can be created/initialized in $\Theta\left(n^{2}\right)$ time.
(3) Recursively compute each of the seven products P_{1}, \ldots, P_{7}.
(9) Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_{i} matrices. This takes $\Theta\left(n^{2}\right)$ time.
$T(n)=\Theta(1)+\Theta\left(n^{2}\right)+7 T(n / 2)+\Theta\left(n^{2}\right)=7 T(n / 2)+\Theta\left(n^{2}\right)$

Summary

- Divide-and-conquer algorithms divide the problem into smaller problems of the same kind, solve them (typically recursively) and combine their solution into a solution of the full problem.
- Their running time can often easily be described with a recurrence.

