Algorithms and Data Structures

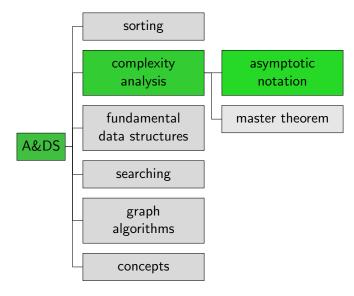
A9. Runtime Analysis: Application

Gabriele Röger

University of Basel

March 13, 2024

Content of the Course



Recap

Symbols

■ "f grows asymptotically as fast as g"

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

Symbols

■ "f grows asymptotically as fast as g"

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

■ "f grows no faster than g"

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

Symbols

■ "f grows asymptotically as fast as g"

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

■ "f grows no faster than g"

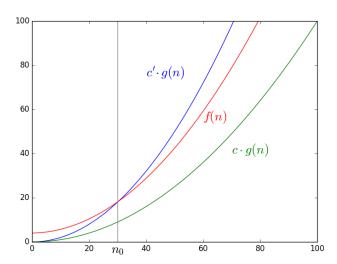
$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

■ "f grows no slower than g"

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

Symbol Theta: Illustration

$$f \in \Theta(g)$$



Some Relevant Classes of Functions

In increasing order (except for the general n^k):

g	growth
1	constant
log n	logarithmic
n	linear
$n \log n$	linearithmic
n^2	quadratic
n^3	cubic
n^k	polynomial (constant k)
2 ⁿ	exponential

Connections

It holds that:

■ $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)

Connections

Recap 000000

It holds that:

- $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)
- $O(n^{k_1}) \subset O(n^{k_2})$ for $k_1 < k_2$ e.g. $O(n^2) \subset O(n^3)$

Calculation Rules

■ Product

$$f_1 \in O(g_1)$$
 and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

Calculation Rules

Product

$$f_1 \in O(g_1)$$
 and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

■ Sum

$$f_1 \in O(g_1) \text{ and } f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$$

Calculation Rules

Product $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

■ Sum $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$

■ Multiplication with a constant k > 0 and $f \in O(g) \Rightarrow kf \in O(g)$ $k > 0 \Rightarrow O(kg) = O(g)$

Application

Quick O-Analysis for Common Code Patterns I

■ Constant-time operation:

$$var = 4 | O(1)$$

Quick O-Analysis for Common Code Patterns I

■ Constant-time operation:

$$var = 4 O(1)$$

Sequence of constant-time operations:

$$\begin{array}{c|cccc}
 var1 & = & 4 & O(1) \\
 var2 & = & 4 & O(1) \\
 & \cdots & & & \\
 var123 & = & 4 & O(1)
 \end{array}$$
 $O(123 \cdot 1) = O(1)$

Quick O-Analysis for Common Code Patterns II

Loop:

for i in range(n):
$$O(n)$$
res += i * m $O(1)$ $O(n \cdot 1) = O(n)$

Quick O-Analysis for Common Code Patterns II

Loop:

for i in range(n):
$$O(n)$$
res += i * m $O(n)$
 $O(n \cdot 1) = O(n)$

```
for i in range(n):
for j in range(i):
res += i * (m - j)
O(n) O(n)
O(n^2)
```

i depends on n.

Quick O-Analysis for Common Code Patterns III

■ if-then-else

if var < bound:	O(1)	O(1)	
res += var	O(1)	O(1)	$O(1+\max\{1,n\})$
else:			= O(n)
for i in range(n):	O(n)	$O(n \cdot 1)$	- O(II)
res += i * n	O(1)	= O(n)	

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound:	O(1)	O(1)	
res += var	O(1)	O(1)	$O(1+\max\{1,n\})$
else:			= O(n)
for i in range(n):	O(n)	$O(n \cdot 1)$	= O(II)
res += i * n	O(1)	= O(n)	

Attention: Can lead to unnecessarily loose bound if the expensive case only occurs with small n(bound by a constant).

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): \# j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

■ Worst case: break never happens.

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

- Worst case: break never happens.
- $O(1 + n \cdot n \cdot 1) = O(n^2)$

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

- Worst case: break never happens.
- $O(1 + n \cdot n \cdot 1) = O(n^2)$
- Over-estimated?

No, each of the two loops has $\Omega(n)$ iterations.

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): \# j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): \# j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

■ Best case: break always immediately with i = i

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

- Best case: break always immediately with j = i
- $O(1+n\cdot 1\cdot 1)=O(n)$

```
def insertion_sort(array):
      n = len(array)
2
      for i in range(1, n): # i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): \# j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

- Best case: break always immediately with i = i
- $O(1 + n \cdot 1 \cdot 1) = O(n)$
- Over-estimated? No, the outer loop has $\Omega(n)$ iterations.

Exam Question from 2019

Consider the following code fragment.

Specify the asymptotic running time (depending on $n \in \mathbb{N}$) in Θ notation and justify your answer (1-2 sentences).

```
int result = 0;
if (n > 23) {
    return result;
}
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        result += j;
    }
}
return result;</pre>
```

Because algorithms/data structures with bad runtime complexity strike back!

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check
 - After fix: 70% less loading time

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check
 - After fix: 70% less loading time
 - https://nee.lv/2021/02/28/
 How-I-cut-GTA-Online-loading-times-by-70/index.
 html

Summary

Summary

- In practice, we quite quickly can get an impression of the running time of an algorithm with simple "cookbook recipes".
- Insertion sort has
 - in the best case running time $\Theta(n)$.
 - in the worst case running time $\Theta(n^2)$.