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Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.
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Previous Results

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem

Merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem

Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Can’t we write this more compactly?
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Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

German mathematician
(1877–1938)

analytic number theory

no friend of applied mathematics

Neutral term: Asymptotic notation
German: Landau notation
Internationally: Bachmann–Landau notation also after
Paul Gustav Heinrich Bachmann (German mathematician)
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Symbol Theta

Definition

For a function g : N → R, we denote by Θ(g) the set of all
functions f : N → R that grow asymptotically as fast as g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“The running time of merge sort is in Θ(n log2 n).”
“f ∈ Θ(n2) with f (n) = 3n2 + 5n + 39”

or by convention (abusing notation/terminology) also

“The running time of merge sort is Θ(n log2 n).”
“3n2 + 5n + 39 = Θ(n2)”
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Symbol Theta: Illustration

f ∈ Θ(g)
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Jupyter Notebook (with Exercises)

Jupyter notebook: asymptotic notation.ipynb
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More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh
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Less Frequently needed Symbols

“f grows slower than g .”

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows faster than g .”

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Pronunciation: ω: little-omega
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Some Relevant Classes of Functions

In increasing order (except for the general nk):

g growth

1 constant
log n logarithmic

n linear
n log n linearithmic

n2 quadratic
n3 cubic
nk polynomial (constant k)
2n exponential
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Questions

Questions?
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Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)
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Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?
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Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)
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Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)
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Reason for Sufficiency of Highest-order Term

Example: 5n3 + 2n ∈ O(n3)

Due to rule for multiplication with a constant:

5n3 ∈ O(n3)
2n ∈ O(n)

Because of 2n ∈ O(n) and O(n) ⊂ O(n3):

2n ∈ O(n3)

Sum rule:

5n3 + 2n ∈ O(n3 + n3)

Multiplication with a constant (for a class):

5n3 + 2n ∈ O(n3)
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Questions

Questions?
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Summary

With asymptotic notation, we refer to classes of functions
that grow no faster/no slower/. . . than a function g .

O(g): Growth no faster than g .
Θ(g): Growth asymptotically as fast as g .
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