Algorithms and Data Structures

A8. Runtime Analysis: Asymptotic Notation

Gabriele Röger
University of Basel

March 13, 2024

Asymptotic Notation

Content of the Course

Result for Merge Sort

"The running time of merge sort grows asymptotically as fast as $n \log _{2} n$."

Result for Merge Sort

"The running time of merge sort grows asymptotically as fast as $n \log _{2} n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

Result for Merge Sort

"The running time of merge sort grows asymptotically as fast as $n \log _{2} n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

■ When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.

Result for Merge Sort

> "The running time of merge sort grows asymptotically as fast as $n \log _{2} n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

■ When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.

- We were not interested in the exact values of the constants but were satisfied if there exist some suitable constants.

Result for Merge Sort

> "The running time of merge sort grows asymptotically as fast as $n \log _{2} n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

■ When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.

- We were not interested in the exact values of the constants but were satisfied if there exist some suitable constants.
- The running time for small n is not that important.

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants $c, c^{\prime}, n_{0}>0$ such that for all $n \geq n_{0}: c n \leq T(n) \leq c^{\prime} n$.

Theorem

Merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

Theorem

Selection sort has quadratic running time, i.e., there are constants $c>0, c^{\prime}>0, n_{0}>0$ such that for $n \geq n_{0}: c n^{2} \leq T(n) \leq c^{\prime} n^{2}$.

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants $c, c^{\prime}, n_{0}>0$ such that for all $n \geq n_{0}: c n \leq T(n) \leq c^{\prime} n$.

Theorem

Merge sort has linearithmic running time, i.e. there are constants $c, c^{\prime}, n_{0}>0$, such that for all $n \geq n_{0}$: $c n \log _{2} n \leq T(n) \leq c^{\prime} n \log _{2} n$.

Theorem

Selection sort has quadratic running time, i.e., there are constants $c>0, c^{\prime}>0, n_{0}>0$ such that for $n \geq n_{0}: c n^{2} \leq T(n) \leq c^{\prime} n^{2}$.

Can't we write this more compactly?

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

- German mathematician (1877-1938)
- analytic number theory
- no friend of applied mathematics

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

- German mathematician (1877-1938)
- analytic number theory
- no friend of applied mathematics

Neutral term: Asymptotic notation
German: Landau notation
Internationally: Bachmann-Landau notation also after
Paul Gustav Heinrich Bachmann (German mathematician)

Symbol Theta

Definition

For a function $g: \mathbb{N} \rightarrow \mathbb{R}$, we denote by $\Theta(g)$ the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that grow asymptotically as fast as g :

$$
\begin{gathered}
\Theta(g)=\left\{f \mid \exists c>0 \exists c^{\prime}>0 \exists n_{0}>0 \forall n \geq n_{0}:\right. \\
\left.c \cdot g(n) \leq f(n) \leq c^{\prime} \cdot g(n)\right\}
\end{gathered}
$$

Symbol Theta

Definition

For a function $g: \mathbb{N} \rightarrow \mathbb{R}$, we denote by $\Theta(g)$ the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that grow asymptotically as fast as g :

$$
\begin{gathered}
\Theta(g)=\left\{f \mid \exists c>0 \exists c^{\prime}>0 \exists n_{0}>0 \forall n \geq n_{0}:\right. \\
\left.c \cdot g(n) \leq f(n) \leq c^{\prime} \cdot g(n)\right\}
\end{gathered}
$$

"The running time of merge sort is in $\Theta\left(n \log _{2} n\right)$."

$$
\text { " } f \in \Theta\left(n^{2}\right) \text { with } f(n)=3 n^{2}+5 n+39 "
$$

or by convention (abusing notation/terminology) also
"The running time of merge sort is $\Theta\left(n \log _{2} n\right)$."

$$
" 3 n^{2}+5 n+39=\Theta\left(n^{2}\right) "
$$

Symbol Theta: Illustration

$$
f \in \Theta(g)
$$

Jupyter Notebook (with Exercises)

Jupyter notebook: asymptotic_notation.ipynb

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

■ O for "Ordnung" (order) of the function.

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- O for "Ordnung" (order) of the function.

■ " f grows at least as fast as g."

$$
\Omega(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- O for "Ordnung" (order) of the function.

■ "f grows at least as fast as g."

$$
\Omega(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

■ $\Theta(g)=O(g) \cap \Omega(g)$

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- O for "Ordnung" (order) of the function.

■ "f grows at least as fast as g."

$$
\Omega(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

- $\Theta(g)=O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- O for "Ordnung" (order) of the function.

■ " f grows at least as fast as g."

$$
\Omega(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

- $\Theta(g)=O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.
- In computer science, we are often only interested in an upper bound on the growth of the running time: O instead of Θ

More Symbols for Asymptotic Growth

- " f grows no faster than g."

$$
O(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- O for "Ordnung" (order) of the function.

■ " f grows at least as fast as g."

$$
\Omega(g)=\left\{f \mid \exists c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

- $\Theta(g)=O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.
- In computer science, we are often only interested in an upper bound on the growth of the running time: O instead of Θ

Pronunciation: Θ : Theta, Ω : Omega, O : Oh

Less Frequently needed Symbols

■ " f grows slower than g."

$$
o(g)=\left\{f \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

Less Frequently needed Symbols

■ " f grows slower than g."

$$
o(g)=\left\{f \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- " f grows faster than g."

$$
\omega(g)=\left\{f \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

Less Frequently needed Symbols

■ " f grows slower than g."

$$
o(g)=\left\{f \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

- " f grows faster than g."

$$
\omega(g)=\left\{f \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: c \cdot g(n) \leq f(n)\right\}
$$

Pronunciation: ω : little-omega

Some Relevant Classes of Functions

In increasing order (except for the general n^{k}):

g	growth
1	constant
$\log n$	logarithmic
n	linear
$n \log n$	linearithmic
n^{2}	quadratic
n^{3}	cubic
n^{k}	polynomial (constant k)
2^{n}	exponential

Alternative Big O notation:

$O(1)=O($ yeah $)$
$\mathrm{O}(\log \mathrm{n})=\mathrm{O}($ nice $)$
$O(n)=O(o k)$
$O\left(n^{2}\right)=O(m y)$
$O\left(2^{n}\right)=O(n o)$
$\mathrm{O}(\mathrm{n}!)=\mathrm{O}(\mathrm{mg}!)$
10:10-6. Apr. 2019
6.302 Retweets 15.739 "Gefällt mir"-Angaben

- 1 (1) 1 (2) 0 옹110
〔】 6,3 Tsd.
,
16 Tsd.

Questions

Questions?

Rules

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=5 n^{2}+3 n-9$
- $f_{2}(n)=3 n \log _{2} n+2 n^{2}$
- $f_{3}(n)=9 n \log _{2} n+n+17$
- $f_{4}(n)=8$

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=5 n^{2}+3 n-9 \in \Theta\left(n^{2}\right)$
- $f_{2}(n)=3 n \log _{2} n+2 n^{2}$
- $f_{3}(n)=9 n \log _{2} n+n+17$
- $f_{4}(n)=8$

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=5 n^{2}+3 n-9 \in \Theta\left(n^{2}\right)$
- $f_{2}(n)=3 n \log _{2} n+2 n^{2} \in \Theta\left(n^{2}\right)$
- $f_{3}(n)=9 n \log _{2} n+n+17$
- $f_{4}(n)=8$

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=5 n^{2}+3 n-9 \in \Theta\left(n^{2}\right)$
- $f_{2}(n)=3 n \log _{2} n+2 n^{2} \in \Theta\left(n^{2}\right)$
- $f_{3}(n)=9 n \log _{2} n+n+17 \in \Theta(n \log n)$
- $f_{4}(n)=8$

Examples for Θ

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=5 n^{2}+3 n-9 \in \Theta\left(n^{2}\right)$
- $f_{2}(n)=3 n \log _{2} n+2 n^{2} \in \Theta\left(n^{2}\right)$
- $f_{3}(n)=9 n \log _{2} n+n+17 \in \Theta(n \log n)$
- $f_{4}(n)=8 \in \Theta(1)$

Examples for Big-O

■ In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.

Examples for Big-O

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=8 n^{2}-3 n-9$
- $f_{2}(n)=n^{3}-3 n \log _{2} n$
- $f_{3}(n)=3 n \log _{2} n+1000 n+10^{200}$

Examples for Big-O

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=8 n^{2}-3 n-9 \in O\left(n^{2}\right)$
- $f_{2}(n)=n^{3}-3 n \log _{2} n$
- $f_{3}(n)=3 n \log _{2} n+1000 n+10^{200}$

Examples for Big-O

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

■ $f_{1}(n)=8 n^{2}-3 n-9 \in O\left(n^{2}\right)$

- $f_{2}(n)=n^{3}-3 n \log _{2} n \in O\left(n^{3}\right)$
- $f_{3}(n)=3 n \log _{2} n+1000 n+10^{200}$

Examples for Big-O

■ In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.

- Examples:
- $f_{1}(n)=8 n^{2}-3 n-9 \in O\left(n^{2}\right)$
- $f_{2}(n)=n^{3}-3 n \log _{2} n \in O\left(n^{3}\right)$
- $f_{3}(n)=3 n \log _{2} n+1000 n+10^{200} \in O(n \log n)$

Examples for Big-O

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
- $f_{1}(n)=8 n^{2}-3 n-9 \in O\left(n^{2}\right)$
- $f_{2}(n)=n^{3}-3 n \log _{2} n \in O\left(n^{3}\right)$
- $f_{3}(n)=3 n \log _{2} n+1000 n+10^{200} \in O(n \log n)$
- Why is this the case?

Connections

It holds that:

- $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O\left(n^{k}\right) \subset O\left(2^{n}\right)$ (for $k \geq 2$)

Connections

It holds that:

- $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O\left(n^{k}\right) \subset O\left(2^{n}\right)$ (for $k \geq 2$)
- $O\left(n^{k_{1}}\right) \subset O\left(n^{k_{2}}\right)$ for $k_{1}<k_{2}$
e.g. $O\left(n^{2}\right) \subset O\left(n^{3}\right)$

Calculation Rules

- Product
$f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right) \Rightarrow f_{1} f_{2} \in O\left(g_{1} g_{2}\right)$

Calculation Rules

- Product
$f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right) \Rightarrow f_{1} f_{2} \in O\left(g_{1} g_{2}\right)$
- Sum
$f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right) \Rightarrow f_{1}+f_{2} \in O\left(g_{1}+g_{2}\right)$

Calculation Rules

- Product
$f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right) \Rightarrow f_{1} f_{2} \in O\left(g_{1} g_{2}\right)$
- Sum
$f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right) \Rightarrow f_{1}+f_{2} \in O\left(g_{1}+g_{2}\right)$
- Multiplication with a constant
$k>0$ and $f \in O(g) \Rightarrow k f \in O(g)$
$k>0 \Rightarrow O(k g)=O(g)$

Reason for Sufficiency of Highest-order Term

Example: $5 n^{3}+2 n \in O\left(n^{3}\right)$
■ Due to rule for multiplication with a constant:

- $5 n^{3} \in O\left(n^{3}\right)$
- $2 n \in O(n)$
- Because of $2 n \in O(n)$ and $O(n) \subset O\left(n^{3}\right)$:
- $2 n \in O\left(n^{3}\right)$

■ Sum rule:

- $5 n^{3}+2 n \in O\left(n^{3}+n^{3}\right)$
- Multiplication with a constant (for a class):
- $5 n^{3}+2 n \in O\left(n^{3}\right)$

Questions

Questions?

Summary

Summary

■ With asymptotic notation, we refer to classes of functions that grow no faster/no slower/...than a function g.

- $O(g)$: Growth no faster than g.
- $\Theta(g)$: Growth asymptotically as fast as g.

