Algorithms and Data Structures A8. Runtime Analysis: Asymptotic Notation

Gabriele Röger

University of Basel

March 13, 2024

Asymptotic Notation

Content of the Course

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

- When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.
- We were not interested in the exact values of the constants but were satisfied if there exist some suitable constants.

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

- When determining the bounds, we ignored lower-order terms (constant and n) or let them disappear.
- We were not interested in the exact values of the constants but were satisfied if there exist some suitable constants.
- The running time for small *n* is not that important.

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \ge n_0$: $cn \le T(n) \le c'n$.

Theorem

Merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

Theorem

Selection sort has quadratic running time, i.e., there are constants $c > 0, c' > 0, n_0 > 0$ such that for $n \ge n_0$: $cn^2 \le T(n) \le c'n^2$.

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \ge n_0$: $cn \le T(n) \le c'n$.

Theorem

Merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

Theorem

Selection sort has quadratic running time, i.e., there are constants $c > 0, c' > 0, n_0 > 0$ such that for $n \ge n_0$: $cn^2 \le T(n) \le c'n^2$.

Can't we write this more compactly?

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

- German mathematician (1877–1938)
- analytic number theory
- no friend of applied mathematics

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

- German mathematician (1877–1938)
- analytic number theory
- no friend of applied mathematics

Neutral term: Asymptotic notation German: Landau notation Internationally: Bachmann–Landau notation also after Paul Gustav Heinrich Bachmann (German mathematician)

Rules

Symbol Theta

Definition

For a function $g : \mathbb{N} \to \mathbb{R}$, we denote by $\Theta(g)$ the set of all functions $f : \mathbb{N} \to \mathbb{R}$ that grow asymptotically as fast as g:

$$\Theta(g) = \{f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$$

Symbol Theta

Definition

For a function $g : \mathbb{N} \to \mathbb{R}$, we denote by $\Theta(g)$ the set of all functions $f : \mathbb{N} \to \mathbb{R}$ that grow asymptotically as fast as g:

$$\Theta(g) = \{f \mid \exists c > 0 \; \exists c' > 0 \; \exists n_0 > 0 \; \forall n \ge n_0 : \ c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$$

"The running time of merge sort is in $\Theta(n \log_2 n)$." " $f \in \Theta(n^2)$ with $f(n) = 3n^2 + 5n + 39$ "

or by convention (abusing notation/terminology) also

"The running time of merge sort is $\Theta(n \log_2 n)$." " $3n^2 + 5n + 39 = \Theta(n^2)$ "

Symbol Theta: Illustration

 $f \in \Theta(g)$

Rules

Jupyter Notebook (with Exercises)

Jupyter notebook: asymptotic_notation.ipynb

■ "f grows no faster than g."

 $O(g) = \{f \mid \exists c > 0 \exists n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

■ "f grows no faster than g."

 $O(g) = \{f \mid \exists c > 0 \exists n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

• *O* for "Ordnung" (order) of the function.

■ "f grows no faster than g."

Asymptotic Notation

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

- *O* for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

■ "f grows no faster than g."

Asymptotic Notation

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

- *O* for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

 $\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$

 $\bullet \ \Theta(g) = O(g) \cap \Omega(g)$

■ "f grows no faster than g."

Asymptotic Notation

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

- O for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

- $\bullet \ \Theta(g) = O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.

• "*f* grows no faster than *g*."

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

- *O* for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

- $\bullet \ \Theta(g) = O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.
- In computer science, we are often only interested in an upper bound on the growth of the running time: O instead of Θ

Asymptotic Notation

■ "f grows no faster than g."

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

- O for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

- $\bullet \ \Theta(g) = O(g) \cap \Omega(g)$
- $f \in \Omega(g)$ if and only if $g \in O(f)$.
- In computer science, we are often only interested in an upper bound on the growth of the running time: O instead of Θ

Pronunciation: Θ : Theta, Ω : Omega, O: Oh

Less Frequently needed Symbols

■ "f grows slower than g."

 $o(g) = \{f \mid \forall c > 0 \exists n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

Less Frequently needed Symbols

■ "f grows slower than g."

 $o(g) = \{f \mid \forall c > 0 \exists n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

■ "f grows faster than g."

 $\omega(g) = \{f \mid \forall c > 0 \exists n_0 > 0 \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

Less Frequently needed Symbols

■ "f grows slower than g."

 $o(g) = \{f \mid \forall c > 0 \exists n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

■ "f grows faster than g."

 $\omega(g) = \{f \mid \forall c > 0 \exists n_0 > 0 \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

Pronunciation: ω : little-omega

Some Relevant Classes of Functions

In increasing order (except for the general n^k):

g	growth
1	constant
log n	logarithmic
п	linear
n log n	linearithmic
n ²	quadratic
n ³	cubic
n ^k	polynomial (constant <i>k</i>)
2 ⁿ	exponential

Rules

Summary 00

Questions

Questions?

٩s		pto	No		
od	ioc				

Rules

Asymptotic Notation	Rules	Summary
000000000000	o●ooooo	00

In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

•
$$f_1(n) = 5n^2 + 3n - 9$$

• $f_2(n) = 3n \log_2 n + 2n^2$
• $f_3(n) = 9n \log_2 n + n + 17$
• $f_4(n) = 8$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

■
$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

■ $f_2(n) = 3n \log_2 n + 2n^2$

$$f_3(n) = 9n \log_2 n + n + 17$$

•
$$f_4(n) = 8$$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

■
$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

■ $f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$
■ $f_3(n) = 9n \log_2 n + n + 17$

•
$$f_4(n) = 8$$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

■
$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

■ $f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$
■ $f_3(n) = 9n \log_2 n + n + 17 \in \Theta(n \log n)$
■ $f_4(n) = 8$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

■
$$f_1(n) = 5n^2 + 3n - 9 \in \Theta(n^2)$$

■ $f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$

■
$$f_3(n) = 9n \log_2 n + n + 17 \in \Theta(n \log n)$$

$$\bullet f_4(n) = 8 \in \Theta(1)$$

Asymptotic Notation	Rules	Summary
000000000000	0000000	00

In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

•
$$f_1(n) = 8n^2 - 3n - 9$$

•
$$f_2(n) = n^3 - 3n \log_2 n$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200}$$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
 - $f_1(n) = 8n^2 3n 9 \in O(n^2)$
 - $f_2(n) = n^3 3n \log_2 n$
 - $f_3(n) = 3n \log_2 n + 1000n + 10^{200}$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

•
$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

•
$$f_2(n) = n^3 - 3n \log_2 n \in O(n^3)$$

$$f_3(n) = 3n \log_2 n + 1000n + 10^{200}$$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:

•
$$f_1(n) = 8n^2 - 3n - 9 \in O(n^2)$$

•
$$f_2(n) = n^3 - 3n \log_2 n \in O(n^3)$$

 $f_3(n) = 3n \log_2 n + 1000n + 10^{200} \in O(n \log n)$

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
 - $f_1(n) = 8n^2 3n 9 \in O(n^2)$
 - $f_2(n) = n^3 3n \log_2 n \in O(n^3)$
 - $f_3(n) = 3n \log_2 n + 1000n + 10^{200} \in O(n \log n)$
- Why is this the case?

Rules	
000000	

Connections

It holds that:

•
$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$$

(for $k \ge 2$)

Rules	
000000	

Connections

It holds that:

• $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)

•
$$O(n^{k_1}) \subset O(n^{k_2})$$
 for $k_1 < k_2$
e.g. $O(n^2) \subset O(n^3)$

Calculation Rules

Product $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

Calculation Rules

Product $f_1 \in O(g_1) \text{ and } f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$ Sum $f_1 \in O(g_1) \text{ and } f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$

Calculation Rules

Product

$$f_1 \in O(g_1)$$
 and $f_2 \in O(g_2) \Rightarrow f_1f_2 \in O(g_1g_2)$

Sum

$$f_1\in \mathit{O}(g_1)$$
 and $f_2\in \mathit{O}(g_2) \Rightarrow f_1+f_2\in \mathit{O}(g_1+g_2)$

Multiplication with a constant

$$k > 0 ext{ and } f \in O(g) \Rightarrow kf \in O(g)$$

 $k > 0 \Rightarrow O(kg) = O(g)$

Rules

Example: $5n^3 + 2n \in O(n^3)$

Due to rule for multiplication with a constant:

■
$$5n^3 \in O(n^3)$$

■ $2n \in O(n)$

Because of $2n \in O(n)$ and $O(n) \subset O(n^3)$:

•
$$2n \in O(n^3)$$

Sum rule:

$$5n^3 + 2n \in O(n^3 + n^3)$$

Multiplication with a constant (for a class):

 $\bullet 5n^3 + 2n \in O(n^3)$

Rules 000000

Questions

Questions?

Summary

Summary

- With asymptotic notation, we refer to classes of functions that grow no faster/no slower/...than a function g.
 - O(g): Growth no faster than g.
 - $\Theta(g)$: Growth asymptotically as fast as g.