
Algorithms and Data Structures
A8. Runtime Analysis: Asymptotic Notation

Gabriele Röger

University of Basel

March 13, 2024



Asymptotic Notation Rules Summary

Asymptotic Notation



Asymptotic Notation Rules Summary

Content of the Course

A&DS

sorting

complexity
analysis

asymptotic
notation

master theoremfundamental
data structures

searching

graph
algorithms

concepts



Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.



Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.



Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.



Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.



Asymptotic Notation Rules Summary

Result for Merge Sort

“The running time of merge sort grows asymptotically
as fast as n log2 n.”

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

When determining the bounds, we ignored lower-order terms
(constant and n) or let them disappear.

We were not interested in the exact values of the constants
but were satisfied if there exist some suitable constants.

The running time for small n is not that important.



Asymptotic Notation Rules Summary

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem

Merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem

Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Can’t we write this more compactly?



Asymptotic Notation Rules Summary

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem

Merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem

Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Can’t we write this more compactly?



Asymptotic Notation Rules Summary

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

German mathematician
(1877–1938)

analytic number theory

no friend of applied mathematics

Neutral term: Asymptotic notation
German: Landau notation
Internationally: Bachmann–Landau notation also after
Paul Gustav Heinrich Bachmann (German mathematician)



Asymptotic Notation Rules Summary

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

German mathematician
(1877–1938)

analytic number theory

no friend of applied mathematics

Neutral term: Asymptotic notation
German: Landau notation
Internationally: Bachmann–Landau notation also after
Paul Gustav Heinrich Bachmann (German mathematician)



Asymptotic Notation Rules Summary

Symbol Theta

Definition

For a function g : N → R, we denote by Θ(g) the set of all
functions f : N → R that grow asymptotically as fast as g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“The running time of merge sort is in Θ(n log2 n).”
“f ∈ Θ(n2) with f (n) = 3n2 + 5n + 39”

or by convention (abusing notation/terminology) also

“The running time of merge sort is Θ(n log2 n).”
“3n2 + 5n + 39 = Θ(n2)”



Asymptotic Notation Rules Summary

Symbol Theta

Definition

For a function g : N → R, we denote by Θ(g) the set of all
functions f : N → R that grow asymptotically as fast as g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“The running time of merge sort is in Θ(n log2 n).”
“f ∈ Θ(n2) with f (n) = 3n2 + 5n + 39”

or by convention (abusing notation/terminology) also

“The running time of merge sort is Θ(n log2 n).”
“3n2 + 5n + 39 = Θ(n2)”



Asymptotic Notation Rules Summary

Symbol Theta: Illustration

f ∈ Θ(g)



Asymptotic Notation Rules Summary

Jupyter Notebook (with Exercises)

Jupyter notebook: asymptotic notation.ipynb



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

More Symbols for Asymptotic Growth

“f grows no faster than g .”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O for “Ordnung” (order) of the function.

“f grows at least as fast as g .”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Θ(g) = O(g) ∩ Ω(g)

f ∈ Ω(g) if and only if g ∈ O(f ).

In computer science, we are often only interested in an upper
bound on the growth of the running time: O instead of Θ

Pronunciation: Θ: Theta, Ω: Omega, O: Oh



Asymptotic Notation Rules Summary

Less Frequently needed Symbols

“f grows slower than g .”

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows faster than g .”

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Pronunciation: ω: little-omega



Asymptotic Notation Rules Summary

Less Frequently needed Symbols

“f grows slower than g .”

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows faster than g .”

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Pronunciation: ω: little-omega



Asymptotic Notation Rules Summary

Less Frequently needed Symbols

“f grows slower than g .”

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows faster than g .”

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Pronunciation: ω: little-omega



Asymptotic Notation Rules Summary

Some Relevant Classes of Functions

In increasing order (except for the general nk):

g growth

1 constant
log n logarithmic

n linear
n log n linearithmic

n2 quadratic
n3 cubic
nk polynomial (constant k)
2n exponential



Asymptotic Notation Rules Summary



Asymptotic Notation Rules Summary

Questions

Questions?



Asymptotic Notation Rules Summary

Rules



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Θ

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Examples for Big-O

In the analysis, only the highest-order term (= fastest-growing
summand) of a function is relevant.

Examples:

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Why is this the case?



Asymptotic Notation Rules Summary

Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)



Asymptotic Notation Rules Summary

Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)



Asymptotic Notation Rules Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Asymptotic Notation Rules Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Asymptotic Notation Rules Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Asymptotic Notation Rules Summary

Reason for Sufficiency of Highest-order Term

Example: 5n3 + 2n ∈ O(n3)

Due to rule for multiplication with a constant:

5n3 ∈ O(n3)
2n ∈ O(n)

Because of 2n ∈ O(n) and O(n) ⊂ O(n3):

2n ∈ O(n3)

Sum rule:

5n3 + 2n ∈ O(n3 + n3)

Multiplication with a constant (for a class):

5n3 + 2n ∈ O(n3)



Asymptotic Notation Rules Summary

Questions

Questions?



Asymptotic Notation Rules Summary

Summary



Asymptotic Notation Rules Summary

Summary

With asymptotic notation, we refer to classes of functions
that grow no faster/no slower/. . . than a function g .

O(g): Growth no faster than g .
Θ(g): Growth asymptotically as fast as g .


	Asymptotic Notation
	

	Rules
	

	Summary
	


