Algorithms and Data Structures
A7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Roger

University of Basel

March 7, 2024

Runtime Analysis: Bottom-Up Merge Sort

®00000000000

Runtime Analysis: Bottom-Up Merge
Sort

Runtime Analysis: Bottom-Up Merge Sort
0@0000000000

Content of the Course

selection sort

not comparison-
| | fundamental
data structures overview and
outlook
algorithms

concepts

Runtime Analysis: Bottom-Up Merge Sort Summar

00@000000000
Merge Step
1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
3 j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = array[i]
7 i+=1
8 else:
9 tmp[k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]

We analyze the running time for m :=hi—lo+1
(number of elements that should be merged).

Runtime Analysis: Bottom-Up Merge Sort Summar

00@000000000
Merge Step
1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
1] 3 j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = array[i]
Co 7 i+=1
8 else:
9 tmp[k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
C3 |12 array[k] = tmpl[k]

We analyze the running time for m :=hi—lo+1
(number of elements that should be merged).

Runtime Analysis: Bottom-Up Merge Sort
000@00000000

Merge Step: Analysis

T(m) =cC +cm-+c3m
> (c2+c3)m

Runtime Analysis: Bottom-Up Merge Sort Summar

0O00@00000000

Merge Step: Analysis

T(m)=c+aom+cm
> (C2 + C3)m

For m > 1:

P
2
I

ca+om+cm
<cm+cm—+cam
(c1 +co+c3)m

Runtime Analysis: Bottom-Up Merge Sort Summar

0O00@00000000

Merge Step: Analysis

T(m)=c+aom+cm
> (C2 + C3)m

For m > 1:

T(m)=c+aom+cm
<cm+coom+ cam
=(a+a+ac)m

The merge step has linear running time, i.e., there are constants
¢, c’,ng > 0 such that for all n > ng: cn < T(n) < c’n.

Runtime Analysis: Bottom-Up Merge Sort Summar

0O000@0000000

Bottom-Up Merge Sort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

We use the following constants in the analysis:
1 lines 2-4 Assumption: merge requires
¢ lines 6 and 12 ca(hi-lo+1) operations.
c3 lines 8,9,11

Runtime Analysis: Bottom-Up Merge Sort
00000@000000

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):

m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):
m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 times inner loop with merge for m = 4
¢+ n/4(c3 4+ 4cy) = o+ 0.25¢c3n + can

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):
m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 times inner loop with merge for m = 4
¢+ n/4(c3 4+ 4cy) = o+ 0.25¢c3n + can

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):

m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n

m Iteration 2: n/4 times inner loop with merge for m = 4
¢+ n/4(c3 4+ 4cy) = o+ 0.25¢c3n + can

[T

m Outer loop terminates after last iteration £.

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):

m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n

m Iteration 2: n/4 times inner loop with merge for m = 4
¢+ n/4(c3 4+ 4cy) = o+ 0.25¢c3n + can

m .

m Outer loop terminates after last iteration £.

m lteration /: 1 time inner loop with merge for m = n

e+ n/n(cs+ ncy) =+ c3+ can

Runtime Analysis: Bottom-Up Merge Sort Summar

[e]e]e]e]e] lelelelele]e]

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2X for some k € N+g

Iterations of the outer loop (m for hi-lo+1):
m [teration 1: n/2 times inner loop with merge for m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 times inner loop with merge for m = 4
¢+ n/4(c3 4+ 4cy) = o+ 0.25¢c3n + can

Outer loop terminates after last iteration £.

m lteration /: 1 time inner loop with merge for m = n
e+ n/n(cs+ ncy) =+ c3+ can

Total T(n) <c1+4(ca+csn+can) < l(ci+co+c3+c)n

Runtime Analysis: Bottom-Up Merge Sort Summar

0O00000e00000

Bottom-Up Merge Sort: Analysis Il

What is the value of £7
m In iteration i we have m = 2 for the merge step.
m In iteration ¢ we have m = 2¢ = n for the merge step.

m Since n = 2% we have ¢ = k = log, n.

With ¢ := ¢ + ¢ + ¢c3 + ¢4 we get T(n) < cnlog, n.

Runtime Analysis: Bottom-Up Merge Sort Summar

0O000000e0000

Bottom-Up Merge Sort: Analysis Il

What if n is not a power of two, so 271 < n < 2k?
m Nevertheless k iterations of the outer loop.
m Inner loop does not perform more operations.
m T (n) < cnk = cn(|logy n| + 1) < 2cnlog, n (for k > 2)

Runtime Analysis: Bottom-Up Merge Sort Summar

000000008000

Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.
— Exercises

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c,c’,ng > 0, such that for all n > ng:
cnlogy, n < T(n) < c’nlog, n.

Runtime Analysis: Bottom-Up Merge Sort
000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

Runtime Analysis: Bottom-Up Merge Sort
000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?

m Assumption: ¢ = 1, one operation takes on average 1078 sec.

Runtime Analysis: Bottom-Up Merge Sort Summar

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
m Assumption: ¢ = 1, one operation takes on average 1078 sec.

m With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

Runtime Analysis: Bottom-Up Merge Sort Summar

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
m Assumption: ¢ = 1, one operation takes on average 1078 sec.

m With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

m With 10 thousand elements ~ 0.0013 seconds.

Runtime Analysis: Bottom-Up Merge Sort Summar

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
m Assumption: ¢ = 1, one operation takes on average 1078 sec.

m With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

With 10 thousand elements ~ 0.0013 seconds.

With 100 thousand elements =~ 0.017 seconds.

Runtime Analysis: Bottom-Up Merge Sort Summar

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
m Assumption: ¢ = 1, one operation takes on average 1078 sec.

m With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

With 10 thousand elements ~ 0.0013 seconds.

With 100 thousand elements =~ 0.017 seconds.

m With 1 million elements =~ 0.2 seconds.

Runtime Analysis: Bottom-Up Merge Sort

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
m Assumption: ¢ = 1, one operation takes on average 1078 sec.

m With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

m With 10 thousand elements ~ 0.0013 seconds.
m With 100 thousand elements ~ 0.017 seconds.
m With 1 million elements =~ 0.2 seconds.

m With 1 billion elements ~ 299 seconds.

Runtime Analysis: Bottom-Up Merge Sort

Summar

000000000800

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: ¢ = 1, one operation takes on average 1072 sec.

With 1000 elements, we wait
1078 - 103 log,(10%) ~ 0.0001 seconds.

With 10 thousand elements ~ 0.0013 seconds.
With 100 thousand elements =~ 0.017 seconds.
With 1 million elements =~ 0.2 seconds.

With 1 billion elements ~ 299 seconds.

Running time nlog, n not much worse than linear running time

Runtime Analysis: Bottom-Up Merge Sort

000000000080

Merge Sort with Cost Model |

Key comparisons
m Only in merge.
m Merging two ranges of length m and n requires in the best
case min(n, m) and in the worst case n+ m — 1 comparisons.
m With two ranges of roughly equal length, this is a linear
number of comparisons, i.e., there are ¢, ¢’ > 0 such that the
number of comparisons is between cn and ¢’n.
— Number of key comparisons that is performed for sorting the
entire input sequence is linearithmic in the length of the
sequence (analogously to the runtime analysis).

Runtime Analysis: Bottom-Up Merge Sort Summar

00000000000 e

Merge Sort with Cost Model Il

Movements of elements
m Only in merge.
® 2n movements for sequence of length n.

m Total for merge sort linearithmic
(analogously to key comparisons).

Summan
0

Summary

Summary
oce

Summary

m Merge sort has linearithmic running time,
key comparisons and movements of elements.

	Runtime Analysis: Bottom-Up Merge Sort
	

	Summary
	

