
Algorithms and Data Structures
A7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Röger

University of Basel

March 7, 2024



Runtime Analysis: Bottom-Up Merge Sort Summary

Runtime Analysis: Bottom-Up Merge
Sort



Runtime Analysis: Bottom-Up Merge Sort Summary

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

lower bound

quicksort

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Step

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

We analyze the running time for m := hi− lo + 1
(number of elements that should be merged).

c1

c2

c3



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Step

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

We analyze the running time for m := hi− lo + 1
(number of elements that should be merged).

c1

c2

c3



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Step: Analysis

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

For m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Step: Analysis

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

For m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Step: Analysis

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

For m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem

The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

We use the following constants in the analysis:
c1 lines 2–4
c2 lines 6 and 12
c3 lines 8,9,11

Assumption: merge requires
c4(hi-lo+1) operations.



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

Iteration 1: n/2 times inner loop with merge for m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 times inner loop with merge for m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Outer loop terminates after last iteration ℓ.

Iteration ℓ: 1 time inner loop with merge for m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis II

What is the value of ℓ?

In iteration i we have m = 2i for the merge step.

In iteration ℓ we have m = 2ℓ = n for the merge step.

Since n = 2k we have ℓ = k = log2 n.

With c := c1 + c2 + c3 + c4 we get T (n) ≤ cn log2 n.



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis III

What if n is not a power of two, so 2k−1 < n < 2k?

Nevertheless k iterations of the outer loop.

Inner loop does not perform more operations.

T (n) ≤ cnk = cn(⌊log2 n⌋+ 1) ≤ 2cn log2 n (for k > 2)



Runtime Analysis: Bottom-Up Merge Sort Summary

Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.
→ Exercises

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

With 10 thousand elements ≈ 0.0013 seconds.

With 100 thousand elements ≈ 0.017 seconds.

With 1 million elements ≈ 0.2 seconds.

With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Sort with Cost Model I

Key comparisons

Only in merge.

Merging two ranges of length m and n requires in the best
case min(n,m) and in the worst case n +m − 1 comparisons.

With two ranges of roughly equal length, this is a linear
number of comparisons, i.e., there are c , c ′ > 0 such that the
number of comparisons is between cn and c ′n.

→ Number of key comparisons that is performed for sorting the
entire input sequence is linearithmic in the length of the
sequence (analogously to the runtime analysis).



Runtime Analysis: Bottom-Up Merge Sort Summary

Merge Sort with Cost Model II

Movements of elements

Only in merge.

2n movements for sequence of length n.

Total for merge sort linearithmic
(analogously to key comparisons).



Runtime Analysis: Bottom-Up Merge Sort Summary

Summary



Runtime Analysis: Bottom-Up Merge Sort Summary

Summary

Merge sort has linearithmic running time,
key comparisons and movements of elements.


	Runtime Analysis: Bottom-Up Merge Sort
	

	Summary
	


