Algorithms and Data Structures A7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Röger

University of Basel

March 7, 2024

Runtime Analysis: Bottom-Up Merge Sort

Content of the Course

Merge Step

```
1 def merge(array, tmp, lo, mid, hi):
       i = 10
2
       i = mid + 1
3
       for k in range(lo, hi + 1): \# k = lo, \ldots, hi
 4
           if j > hi or (i <= mid and array[i] <= array[j]):</pre>
5
                tmp[k] = array[i]
6
                i += 1
7
           else:
8
                tmp[k] = array[j]
9
                i += 1
10
       for k in range(lo, hi + 1): \# k = lo, \ldots, hi
11
           array[k] = tmp[k]
12
```

We analyze the running time for m := hi - lo + 1 (number of elements that should be merged).

Merge Step

```
1 def merge(array, tmp, lo, mid, hi):
           i = 10
    2
c_1
           j = mid + 1
           for k in range(lo, hi + 1): \# k = lo, \ldots, hi
    4
               if j > hi or (i <= mid and array[i] <= array[j]):</pre>
    5
                    tmp[k] = array[i]
    6
                    i += 1
    7
C2
               else:
    8
                    tmp[k] = array[j]
    9
                    i += 1
   10
           for k in range(lo, hi + 1): \# k = lo, \ldots, hi
   11
               array[k] = tmp[k]
C3 12
```

We analyze the running time for m := hi - lo + 1 (number of elements that should be merged).

Merge Step: Analysis

$T(m) = c_1 + c_2 m + c_3 m$ $\geq (c_2 + c_3) m$

Merge Step: Analysis

$$T(m) = c_1 + c_2 m + c_3 m$$
$$\geq (c_2 + c_3) m$$

For $m \geq 1$:

$$T(m) = c_1 + c_2 m + c_3 m$$

 $\leq c_1 m + c_2 m + c_3 m$
 $= (c_1 + c_2 + c_3)m$

Merge Step: Analysis

$$T(m) = c_1 + c_2 m + c_3 m$$
$$\geq (c_2 + c_3) m$$

For $m \geq 1$:

$$T(m) = c_1 + c_2 m + c_3 m$$

$$\leq c_1 m + c_2 m + c_3 m$$

$$= (c_1 + c_2 + c_3) m$$

Theorem

The merge step has linear running time, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \ge n_0$: $cn \le T(n) \le c'n$.

Bottom-Up Merge Sort

```
1 def sort(array):
       n = len(array)
2
      tmp = list(array)
3
       length = 1
4
       while length < n:
5
           10 = 0
6
           while lo < n - length:
7
               mid = lo + length - 1
8
               hi = min(lo + 2 * length - 1, n - 1)
9
               merge(array, tmp, lo, mid, hi)
10
               lo += 2 * length
11
           length *= 2
12
```

We use the following constants in the analysis:

 c_1 lines 2–4Assumption: merge requires c_2 lines 6 and 12 c_4 (hi-lo+1) operations. c_3 lines 8,9,11

Assumption: $n = 2^k$ for some $k \in \mathbb{N}_{>0}$

Assumption: $n = 2^k$ for some $k \in \mathbb{N}_{>0}$

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

Iterations of the outer loop (m for hi-lo+1):

■ Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

- Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$

Bottom-Up Merge Sort: Analysis I

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

- Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$

Bottom-Up Merge Sort: Analysis I

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

- Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$
- Outer loop terminates after last iteration ℓ .

Bottom-Up Merge Sort: Analysis I

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

- Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$
- Outer loop terminates after last iteration ℓ .
- Iteration ℓ : 1 time inner loop with merge for m = n $c_2 + n/n(c_3 + nc_4) = c_2 + c_3 + c_4 n$

Bottom-Up Merge Sort: Analysis I

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

Iterations of the outer loop (m for hi-lo+1):

- Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$
- Outer loop terminates after last iteration ℓ .
- Iteration ℓ : 1 time inner loop with merge for m = n $c_2 + n/n(c_3 + nc_4) = c_2 + c_3 + c_4 n$

Total $T(n) \le c_1 + \ell(c_2 + c_3n + c_4n) \le \ell(c_1 + c_2 + c_3 + c_4)n$

What is the value of ℓ ?

- In iteration *i* we have $m = 2^i$ for the merge step.
- In iteration ℓ we have $m = 2^{\ell} = n$ for the merge step.

Since
$$n = 2^k$$
 we have $\ell = k = \log_2 n$.

With $c := c_1 + c_2 + c_3 + c_4$ we get $T(n) \le cn \log_2 n$.

What if n is not a power of two, so $2^{k-1} < n < 2^k$?

- Nevertheless *k* iterations of the outer loop.
- Inner loop does not perform more operations.
- $T(n) \leq cnk = cn(\lfloor \log_2 n \rfloor + 1) \leq 2cn \log_2 n$ (for k > 2)

Analogous argument possible for lower bound.

 $\rightarrow {\sf Exercises}$

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

What does this mean in practice?

• Assumption: c = 1, one operation takes on average 10^{-8} sec.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- \blacksquare With 10 thousand elements \approx 0.0013 seconds.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- \blacksquare With 10 thousand elements \approx 0.0013 seconds.
- With 100 thousand elements \approx 0.017 seconds.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- \blacksquare With 10 thousand elements \approx 0.0013 seconds.
- With 100 thousand elements \approx 0.017 seconds.
- With 1 million elements \approx 0.2 seconds.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- With 10 thousand elements \approx 0.0013 seconds.
- With 100 thousand elements \approx 0.017 seconds.
- With 1 million elements \approx 0.2 seconds.
- With 1 billion elements pprox 299 seconds.

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

What does this mean in practice?

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- With 10 thousand elements \approx 0.0013 seconds.
- With 100 thousand elements \approx 0.017 seconds.
- With 1 million elements \approx 0.2 seconds.
- With 1 billion elements \approx 299 seconds.

Running time $n \log_2 n$ not much worse than linear running time

Merge Sort with Cost Model I

Key comparisons

- Only in merge.
- Merging two ranges of length m and n requires in the best case min(n, m) and in the worst case n + m 1 comparisons.
- With two ranges of roughly equal length, this is a linear number of comparisons, i.e., there are c, c' > 0 such that the number of comparisons is between cn and c'n.
- \rightarrow Number of key comparisons that is performed for sorting the entire input sequence is linearithmic in the length of the sequence (analogously to the runtime analysis).

Merge Sort with Cost Model II

Movements of elements

- Only in merge.
- 2*n* movements for sequence of length *n*.
- Total for merge sort linearithmic (analogously to key comparisons).

Summary

Runtime Analysis: Bottom-Up Merge Sort 00000000000

 Merge sort has linearithmic running time, key comparisons and movements of elements.