Algorithms and Data Structures A7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Röger

University of Basel

March 7, 2024

G. Röger (University of Basel)

Algorithms and Data Structures

March 7, 2024 1 / 16

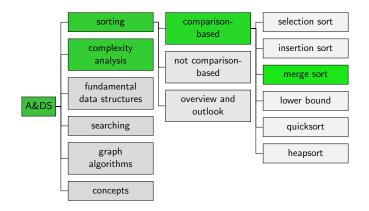
Algorithms and Data Structures March 7, 2024 — A7. Runtime Analysis: Bottom-Up Merge Sort

A7.1 Runtime Analysis: Bottom-Up Merge Sort

A7.2 Summary

A7.1 Runtime Analysis: Bottom-Up Merge Sort

Content of the Course



Merge Step

```
1 def merge(array, tmp, lo, mid, hi):
           i = lo
    2
c<sub>1</sub>
           j = mid + 1
           for k in range(lo, hi + 1): \# k = lo, \ldots, hi
    4
                if j > hi or (i <= mid and array[i] <= array[j]):</pre>
    5
                    tmp[k] = array[i]
    6
                    i += 1
    7
c_2
    8
               else:
                    tmp[k] = array[j]
    9
                    i += 1
   10
           for k in range(lo, hi + 1): \# k = lo, \ldots, hi
   11
                array[k] = tmp[k]
C3 12
```

We analyze the running time for m := hi - lo + 1 (number of elements that should be merged).

G. Röger (University of Basel)

Merge Step: Analysis

$$T(m) = c_1 + c_2 m + c_3 m$$
$$\geq (c_2 + c_3) m$$

For $m \geq 1$:

$$T(m) = c_1 + c_2 m + c_3 m$$

 $\leq c_1 m + c_2 m + c_3 m$
 $= (c_1 + c_2 + c_3)m$

Theorem

The merge step has linear running time, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \ge n_0$: $cn \le T(n) \le c'n$.

G. Röger (University of Basel)

Algorithms and Data Structures

Bottom-Up Merge Sort

```
1 def sort(array):
       n = len(array)
\mathbf{2}
       tmp = list(array)
3
       length = 1
 4
       while length < n:
5
           10 = 0
6
           while lo < n - length:
7
                mid = lo + length - 1
 8
                hi = min(lo + 2 * length - 1, n - 1)
9
                merge(array, tmp, lo, mid, hi)
10
                lo += 2 * length
11
           length *= 2
12
```

We use the following constants in the analysis:

- c1lines 2–4Assumption: merge requires
- c₂ lines 6 and 12
- **c**₃ lines 8,9,11

 c_4 (hi-lo+1) operations.

Bottom-Up Merge Sort: Analysis I

Assumption:
$$n = 2^k$$
 for some $k \in \mathbb{N}_{>0}$

Iterations of the outer loop (m for hi-lo+1):

- ► Iteration 1: n/2 times inner loop with merge for m = 2 $c_2 + n/2(c_3 + 2c_4) = c_2 + 0.5c_3n + c_4n$
- ► Iteration 2: n/4 times inner loop with merge for m = 4 $c_2 + n/4(c_3 + 4c_4) = c_2 + 0.25c_3n + c_4n$
- Outer loop terminates after last iteration ℓ .
- ► Iteration ℓ : 1 time inner loop with merge for m = n $c_2 + n/n(c_3 + nc_4) = c_2 + c_3 + c_4 n$

Total $T(n) \le c_1 + \ell(c_2 + c_3n + c_4n) \le \ell(c_1 + c_2 + c_3 + c_4)n$

...

Bottom-Up Merge Sort: Analysis II

What is the value of ℓ ?

- ln iteration *i* we have $m = 2^i$ for the merge step.
- ▶ In iteration ℓ we have $m = 2^{\ell} = n$ for the merge step.

Since
$$n = 2^k$$
 we have $\ell = k = \log_2 n$.

With $c := c_1 + c_2 + c_3 + c_4$ we get $T(n) \le cn \log_2 n$.

Bottom-Up Merge Sort: Analysis III

What if *n* is not a power of two, so $2^{k-1} < n < 2^k$?

- Nevertheless k iterations of the outer loop.
- Inner loop does not perform more operations.

►
$$T(n) \le cnk = cn(\lfloor \log_2 n \rfloor + 1) \le 2cn \log_2 n$$
 (for $k > 2$)

A7. Runtime Analysis: Bottom-Up Merge Sort

Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.

 \rightarrow Exercises

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

Linearithmic Running Time

Linearithmic running time $n \log_2 n$:

 \rightarrow twice as large input, slightly more than twice the running time

What does this mean in practice?

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- With 10 thousand elements \approx 0.0013 seconds.
- \blacktriangleright With 100 thousand elements ≈ 0.017 seconds.
- With 1 million elements \approx 0.2 seconds.
- With 1 billion elements \approx 299 seconds.

Running time $n \log_2 n$ not much worse than linear running time

G. Röger (University of Basel)

Merge Sort with Cost Model I

Key comparisons

- Only in merge.
- ▶ Merging two ranges of length m and n requires in the best case min(n, m) and in the worst case n + m − 1 comparisons.
- With two ranges of roughly equal length, this is a linear number of comparisons, i.e., there are c, c' > 0 such that the number of comparisons is between cn and c'n.
- \rightarrow Number of key comparisons that is performed for sorting the entire input sequence is linearithmic in the length of the sequence (analogously to the runtime analysis).

A7. Runtime Analysis: Bottom-Up Merge Sort

Runtime Analysis: Bottom-Up Merge Sort

Merge Sort with Cost Model II

Movements of elements

- Only in merge.
- ▶ 2*n* movements for sequence of length *n*.
- Total for merge sort linearithmic (analogously to key comparisons).

A7.2 Summary

Merge sort has linearithmic running time, key comparisons and movements of elements.