Algorithms and Data Structures A6. Runtime Analysis: Logarithm

Gabriele Röger

University of Basel

March 7, 2024

Logarithm

Content of the Course

Logarithm

- For the analysis of merge sort, we will need the logarithm function.
- This is often the case in runtime analysis, in particular for divide-and-conquer algorithms.
- The logarithm to the base b is the inverse function to exponentiation with base b, i.e.

 $\log_b x = y$ iff. $b^y = x$.

- Example: log₂ 8 = 3, because 2³ = 8
 Example: log₃ 81 = 4, because 3⁴ = 81
- log_b a intuitively (if this works without remainder):
 "How often must we divide a by b to reach 1?"

Logarithm: Illustration

The following rules are immediate results of the rules $(b^c)^d = b^{cd} = (b^c)^d$ and $b^c b^d = b^{c+d}$:

The following rules are immediate results of the rules $(b^c)^d = b^{cd} = (b^c)^d$ and $b^c b^d = b^{c+d}$:

product $\log_b(xy) = \log_b x + \log_b y$

The following rules are immediate results of the rules $(b^c)^d = b^{cd} = (b^c)^d$ and $b^c b^d = b^{c+d}$:

product $\log_b(xy) = \log_b x + \log_b y$ power $\log_b(x^r) = r \log_b x$

The following rules are immediate results of the rules $(b^c)^d = b^{cd} = (b^c)^d$ and $b^c b^d = b^{c+d}$:

product	$\log_b(xy) = \log_b x + \log_b y$
power	$\log_b(x^r) = r \log_b x$
change of base	$\log_b x = \log_a x / \log_a b$

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log_b x}$. How do we get the logarithm out of the exponent?

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log_b x}$. How do we get the logarithm out of the exponent?

Example: $5^{\log_2 x}$ We use $5 = 2^{\log_2 5}$.

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log_b x}$. How do we get the logarithm out of the exponent?

Example: $5^{\log_2 x}$ We use $5 = 2^{\log_2 5}$.

$$5^{\log_2 x} = (2^{\log_2 5})^{\log_2 x}$$

= $2^{\log_2 5 \log_2 x}$
= $2^{\log_2 x \log_2 5}$
= $(2^{\log_2 x})^{\log_2 5}$
= $x^{\log_2 5}$
 $\approx x^{2.32}$