Algorithms and Data Structures
 A6. Runtime Analysis: Logarithm

Gabriele Röger
University of Basel

March 7, 2024

Logarithm

Content of the Course

Logarithm

- For the analysis of merge sort, we will need the logarithm function.
- This is often the case in runtime analysis, in particular for divide-and-conquer algorithms.
- The logarithm to the base b is the inverse function to exponentiation with base b, i.e.

$$
\log _{b} x=y \text { iff. } b^{y}=x
$$

- Example: $\log _{2} 8=3$, because $2^{3}=8$

Example: $\log _{3} 81=4$, because $3^{4}=81$
■ $\log _{b}$ a intuitively (if this works without remainder):
"How often must we divide a by b to reach 1?"

Logarithm: Illustration

Calculation with Logarithms

The following rules are immediate results of the rules $\left(b^{c}\right)^{d}=b^{c d}=\left(b^{c}\right)^{d}$ and $b^{c} b^{d}=b^{c+d}$:

Calculation with Logarithms

The following rules are immediate results of the rules $\left(b^{c}\right)^{d}=b^{c d}=\left(b^{c}\right)^{d}$ and $b^{c} b^{d}=b^{c+d}$:

$$
\text { product } \log _{b}(x y)=\log _{b} x+\log _{b} y
$$

Calculation with Logarithms

The following rules are immediate results of the rules $\left(b^{c}\right)^{d}=b^{c d}=\left(b^{c}\right)^{d}$ and $b^{c} b^{d}=b^{c+d}$:
product $\log _{b}(x y)=\log _{b} x+\log _{b} y$ power $\log _{b}\left(x^{r}\right)=r \log _{b} x$

Calculation with Logarithms

The following rules are immediate results of the rules $\left(b^{c}\right)^{d}=b^{c d}=\left(b^{c}\right)^{d}$ and $b^{c} b^{d}=b^{c+d}$:
product $\log _{b}(x y)=\log _{b} x+\log _{b} y$
power $\log _{b}\left(x^{r}\right)=r \log _{b} x$
change of base $\log _{b} x=\log _{a} x / \log _{a} b$

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log _{b} x}$. How do we get the logarithm out of the exponent?

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log _{b} x}$. How do we get the logarithm out of the exponent?

Example: $5^{\log _{2} x}$
We use $5=2^{\log _{2} 5}$.

Logarithm: Example Calculation

In the analysis of algorithms, we sometimes see expressions of the form $a^{\log _{b} x}$. How do we get the logarithm out of the exponent?

Example: $5^{\log _{2} x}$
We use $5=2^{\log _{2} 5}$.

$$
\begin{aligned}
5^{\log _{2} x} & =\left(2^{\log _{2} 5}\right)^{\log _{2} x} \\
& =2^{\log _{2} 5 \log _{2} x} \\
& =2^{\log _{2} x \log _{2} 5} \\
& =\left(2^{\log _{2} x}\right)^{\log _{2} 5} \\
& =x^{\log _{2} 5} \\
& \approx x^{2.32}
\end{aligned}
$$

