Algorithms and Data Structures

A5. Runtime Analysis: Introduction and Selection Sort

Gabriele Röger
University of Basel

March 6, 2024

Runtime Analysis in General

Content of the Course

Exact Runtime Analysis Unrealistic

- Would be nice: formula that determines for a specific input how long the computation will take.
- Exact runtime prediction is hard because of too many influencing factors.
- Speed and architecture of the computer
- Programming language
- Compiler version
- Current load (what else is running?)
- Caching behavior

We neither can nor want to consider all this in a formula.

Runtime Analysis: 1st Simplification

Don't measure time but count operations
What is an operation?
■ Ideally: one line of machine code or - even more precisely one processor cycle

- Instead: constant-time operations

■ Constant time: running time independent of input.

- Ignore runtime differences of different operations.

■ E.g. addition, assignments, branching, function call.

- Roughly: operation $=$ one line of code.

■ But: also consider what's behind it e.g. steps inside the called function.

Running time roughly proportional to the number of operations

Runtime Analysis: 2nd Simplification

Don't count exactly but use bounds!
■ Mostly considering upper bounds How many steps does it take at most?

- Sometimes also lower bound How many steps are at least executed?
„running time" for bound on number of executed operations

Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

- $T(n)$: running time for input of size n

■ For adaptive algorithms we distinguish
■ Best case running time for best possible input of size n

- Worst case running time for worst possible input of size n
- Average case average running time over all inputs of size n

Cost Models

Sometimes: analysis wrt. cost model

- Identify fundamental operations for the algorithm class e.g. for sorting algorithms.
- Key comparison
- Swap of two elements or movement of an element
- Analyze number of these operations.

Example from $\mathrm{C}++$ Reference

function template
std::SOrt

default (1)

template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

Sort elements in range

Sorts the elements in the range [first, last) into ascending order.
The elements are compared using operator< for the first version, and comp for the second.
Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

Complexity

On average, linearithmic in the distance between first and last: Performs approximately $N * \log _{2}(N)$ (where N is this distance) comparisons of elements, and up to that many element swaps (or moves).
http://www.cplusplus.com/reference/algorithm/sort/

Questions

Questions?

Example: Selection Sort

Content of the Course

Selection Sort: Algorithm

```
def selection_sort(array):
    n = len(array)
    for i in range(n - 1): # i = 0, ..., n-2
        # find index of minimum element at positions i, ..., n-1
        min_index = i
        for j in range(i + 1, n): # j = i+1, ..., n-1
            if array[j] < array[min_index]:
                min_index = j
        # swap element at position i with minimum element
        array[i], array[min_index] = array[min_index], array[i]
```


Selection Sort with Cost Model

```
def selection_sort(array):
    n = len(array)
    for i in range(n - 1): # i = 0, ..., n-2
        # find index of minimum element at positions i, ..., n-1
        min_index = i
        for j in range(i + 1, n): # j = i+1, ..., n-1
            if array[j] < array[min_index]:
            min_index = j
        # swap element at position i with minimum element
        array[i], array[min_index] = array[min_index], array[i]
```

On an input of size n , how often does the algorithm swap two elements?

Selection Sort with Cost Model

```
def selection_sort(array):
    n = len(array)
    for i in range(n - 1): # i = 0, ..., n-2
        # find index of minimum element at positions i, ..., n-1
        min_index = i
        for j in range(i + 1, n): # j = i+1, ..., n-1
            if array[j] < array[min_index]:
                        min_index = j
        # swap element at position i with minimum element
        array[i], array[min_index] = array[min_index], array[i]
```

$\rightarrow \mathrm{n}-1$ swaps of two elements ("linear")

Selection Sort with Cost Model

```
def selection_sort(array):
    n = len(array)
    for i in range(n - 1): # i = 0, ..., n-2
        # find index of minimum element at positions i, ..., n-1
        min_index = i
        for j in range(i + 1, n): # j = i+1, ..., n-1
            if array[j] < array[min_index]:
                        min_index = j
        # swap element at position i with minimum element
        array[i], array[min_index] = array[min_index], array[i]
```

$\rightarrow \mathrm{n}-1$ swaps of two elements ("linear")
$\rightarrow 0.5(\mathrm{n}-1) \mathrm{n}$ key comparisons ("quadratic")

Selection Sort: Analysis I

We show: $T(n) \leq c^{\prime} \cdot n^{2}$ for $n \geq 1$ and some constant c^{\prime}

- Outer loop (3-10) and inner loop (6-8)

■ Number of operations for each iteration of the outer loop:

Selection Sort: Analysis I

We show: $T(n) \leq c^{\prime} \cdot n^{2}$ for $n \geq 1$ and some constant c^{\prime}

- Outer loop (3-10) and inner loop (6-8)

■ Number of operations for each iteration of the outer loop:

- Constant a for no. of operations in lines 7 and 8
- Constant b for no. of operations in lines 5 and 10
i | \# operations

Selection Sort: Analysis I

We show: $T(n) \leq c^{\prime} \cdot n^{2}$ for $n \geq 1$ and some constant c^{\prime}

- Outer loop (3-10) and inner loop (6-8)

■ Number of operations for each iteration of the outer loop:

- Constant a for no. of operations in lines 7 and 8
- Constant b for no. of operations in lines 5 and 10

$$
\begin{array}{c|c}
\text { i } & \text { \# operations } \\
0 & a(n-1)+b \\
1 & a(n-2)+b
\end{array}
$$

Selection Sort: Analysis I

We show: $T(n) \leq c^{\prime} \cdot n^{2}$ for $n \geq 1$ and some constant c^{\prime}

- Outer loop (3-10) and inner loop (6-8)

■ Number of operations for each iteration of the outer loop:

- Constant a for no. of operations in lines 7 and 8
- Constant b for no. of operations in lines 5 and 10

$$
\begin{array}{r|l}
\text { i } & \text { \# operations } \\
0 & a(n-1)+b \\
1 & a(n-2)+b \\
& \cdots \\
\mathrm{n}-2 & a \cdot 1+b
\end{array}
$$

Selection Sort: Analysis I

We show: $T(n) \leq c^{\prime} \cdot n^{2}$ for $n \geq 1$ and some constant c^{\prime}

- Outer loop (3-10) and inner loop (6-8)

■ Number of operations for each iteration of the outer loop:

- Constant a for no. of operations in lines 7 and 8
- Constant b for no. of operations in lines 5 and 10

i	\# operations
0	$a(n-1)+b$
1	$a(n-2)+b$
	\cdots
$\mathrm{n}-2$	$a \cdot 1+b$

- Total: $T(n)=\sum_{i=0}^{n-2}(a(n-(i+1))+b)$

Selection Sort: Analysis II

$$
T(n)=\sum_{i=0}^{n-2}(a(n-(i+1))+b)
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b)
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1)
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1)
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1)
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) n
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) n \\
& \leq 0.5 a n^{2}+b n^{2}
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) n \\
& \leq 0.5 a n^{2}+b n^{2} \\
& =(0.5 a+b) n^{2}
\end{aligned}
$$

Selection Sort: Analysis II

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-2}(a(n-(i+1))+b) \\
& =\sum_{i=1}^{n-1}(a(n-i)+b) \\
& =a \sum_{i=1}^{n-1}(n-i)+b(n-1) \\
& =0.5 a(n-1) n+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) \\
& \leq 0.5 a n^{2}+b(n-1) n \\
& \leq 0.5 a n^{2}+b n^{2} \\
& =(0.5 a+b) n^{2}
\end{aligned}
$$

\Rightarrow with $c^{\prime}=(0.5 a+b)$ it holds for $n \geq 1$ that $T(n) \leq c^{\prime} \cdot n^{2}$

Selection Sort: Analysis III

Too generous bound?

We show for $n \geq 2: T(n) \geq c \cdot n^{2}$ for some constant c

Selection Sort: Analysis III

Too generous bound?

We show for $n \geq 2: T(n) \geq c \cdot n^{2}$ for some constant c

$$
\begin{aligned}
T(n) & =\cdots=0.5 a(n-1) n+b(n-1) \\
& \geq 0.5 a(n-1) n \\
& \geq 0.25 a n^{2} \quad(n-1 \geq 0.5 n \text { for } n \geq 2) \\
\Rightarrow \text { with } c & =0.25 a \text { it holds for } n \geq 2 \text { that } T(n) \geq c \cdot n^{2}
\end{aligned}
$$

Selection Sort: Analysis III

Too generous bound?

We show for $n \geq 2: T(n) \geq c \cdot n^{2}$ for some constant c

$$
\begin{aligned}
T(n) & =\cdots=0.5 a(n-1) n+b(n-1) \\
& \geq 0.5 a(n-1) n \\
& \geq 0.25 a n^{2} \quad(n-1 \geq 0.5 n \text { for } n \geq 2) \\
\Rightarrow \text { with } c & =0.25 a \text { it holds for } n \geq 2 \text { that } T(n) \geq c \cdot n^{2}
\end{aligned}
$$

Theorem

Selection sort has quadratic running time, i.e., there are constants $c>0, c^{\prime}>0, n_{0}>0$ such that for $n \geq n_{0}: c n^{2} \leq T(n) \leq c^{\prime} n^{2}$.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?

- Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?
■ Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.

- With 1000 elements, we wait

$$
10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02 \text { seconds. }
$$

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?
■ Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.

- With 1000 elements, we wait

$$
10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02 \text { seconds. }
$$

- With 10 thousand elements, we wait $10^{-8} \cdot\left(10^{4}\right)^{2}=1$ second.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?
■ Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.

- With 1000 elements, we wait

$$
10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02 \text { seconds. }
$$

- With 10 thousand elements, we wait $10^{-8} \cdot\left(10^{4}\right)^{2}=1$ second.
■ With 100 thousand elements $10^{-8} \cdot\left(10^{5}\right)^{2}=100$ seconds.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?

- Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.
- With 1000 elements, we wait

$$
10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02 \text { seconds. }
$$

- With 10 thousand elements, we wait $10^{-8} \cdot\left(10^{4}\right)^{2}=1$ second.
- With 100 thousand elements $10^{-8} \cdot\left(10^{5}\right)^{2}=100$ seconds.
- With 1 million elements $10^{-8} \cdot\left(10^{6}\right)^{2}$ seconds $=2.77$ hours.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?

- Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.
- With 1000 elements, we wait

$$
10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02 \text { seconds. }
$$

■ With 10 thousand elements, we wait $10^{-8} \cdot\left(10^{4}\right)^{2}=1$ second.

- With 100 thousand elements $10^{-8} \cdot\left(10^{5}\right)^{2}=100$ seconds.
- With 1 million elements $10^{-8} \cdot\left(10^{6}\right)^{2}$ seconds $=2.77$ hours.
- With 1 billion elements $10^{-8} \cdot\left(10^{9}\right)^{2}$ seconds $=317$ years. 1 billion numbers with 4 bytes/number are „only" 4 GB.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time
What does this mean in practice?

- Assumption: $c=1$, one operation takes on average $10^{-8} \mathrm{sec}$.
- With 1000 elements, we wait $10^{-8} \cdot\left(10^{3}\right)^{2}=10^{-8} \cdot 10^{6}=10^{-2}=0.02$ seconds.
■ With 10 thousand elements, we wait $10^{-8} \cdot\left(10^{4}\right)^{2}=1$ second.
- With 100 thousand elements $10^{-8} \cdot\left(10^{5}\right)^{2}=100$ seconds.
- With 1 million elements $10^{-8} \cdot\left(10^{6}\right)^{2}$ seconds $=2.77$ hours.
- With 1 billion elements $10^{-8} \cdot\left(10^{9}\right)^{2}$ seconds $=317$ years. 1 billion numbers with 4 bytes/number are "only" 4 GB.

Quadratic running time problematic for large inputs

Questions

Questions?

Summary

Summary

■ Runtime analysis considers bounds on the number of executed operations.

■ We don't count exactly.

- We ignore how long each operation actually takes.

■ Running time should be roughly proportional to the number of operations.
■ Selection sort has quadratic running time and performs a linear number of swaps and a quadratic number of key comparisons.

