
Algorithms and Data Structures
A5. Runtime Analysis: Introduction and Selection Sort

Gabriele Röger

University of Basel

March 6, 2024

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 1 / 20

Algorithms and Data Structures
March 6, 2024 — A5. Runtime Analysis: Introduction and Selection Sort

A5.1 Runtime Analysis in General

A5.2 Example: Selection Sort

A5.3 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 2 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

A5.1 Runtime Analysis in General

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 3 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 4 / 20



A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Exact Runtime Analysis Unrealistic

▶ Would be nice: formula that determines for a specific input
how long the computation will take.

▶ Exact runtime prediction is hard because of too many
influencing factors.
▶ Speed and architecture of the computer
▶ Programming language
▶ Compiler version
▶ Current load (what else is running?)
▶ Caching behavior

We neither can nor want to consider all this in a formula.

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 5 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 1st Simplification

Don’t measure time but count operations

What is an operation?

▶ Ideally: one line of machine code or – even more precisely –
one processor cycle

▶ Instead: constant-time operations
▶ Constant time: running time independent of input.
▶ Ignore runtime differences of different operations.
▶ E.g. addition, assignments, branching, function call.
▶ Roughly: operation = one line of code.
▶ But: also consider what’s behind it

e.g. steps inside the called function.

Running time roughly proportional to the number of operations

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 6 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 2nd Simplification

Don’t count exactly but use bounds!

▶ Mostly considering upper bounds
How many steps does it take at most?

▶ Sometimes also lower bound
How many steps are at least executed?

”
running time“ for bound on number of executed operations

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 7 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

▶ T (n): running time for input of size n
▶ For adaptive algorithms we distinguish

▶ Best case
running time for best possible input of size n

▶ Worst case
running time for worst possible input of size n

▶ Average case
average running time over all inputs of size n

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 8 / 20



A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Cost Models

Sometimes: analysis wrt. cost model

▶ Identify fundamental operations for the algorithm class
e.g. for sorting algorithms.
▶ Key comparison
▶ Swap of two elements or movement of an element

▶ Analyze number of these operations.

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 9 / 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Example from C++ Reference

http://www.cplusplus.com/reference/algorithm/sort/

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 10 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

A5.2 Example: Selection Sort

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 11 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

lower bound

quicksort

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 12 / 20

http://www.cplusplus.com/reference/algorithm/sort/


A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 13 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort with Cost Model

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

→ n-1 swaps of two elements (“linear”)
→ 0.5(n-1)n key comparisons (“quadratic”)

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 14 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis I

We show: T (n) ≤ c ′ · n2 for n ≥ 1 and some constant c ′

▶ Outer loop (3-10) and inner loop (6-8)
▶ Number of operations for each iteration of the outer loop:

▶ Constant a for no. of operations in lines 7 and 8
▶ Constant b for no. of operations in lines 5 and 10

i # operations
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

▶ Total: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 15 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

= 0.5a(n − 1)n + b(n − 1)

≤ 0.5an2 + b(n − 1)

≤ 0.5an2 + b(n − 1)n

≤ 0.5an2 + bn2

= (0.5a+ b)n2

⇒ with c ′ = (0.5a+ b) it holds for n ≥ 1 that T (n) ≤ c ′ · n2

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 16 / 20



A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis III

Too generous bound?

We show for n ≥ 2: T (n) ≥ c · n2 for some constant c

T (n) = · · · = 0.5a(n − 1)n + b(n − 1)

≥ 0.5a(n − 1)n

≥ 0.25an2 (n − 1 ≥ 0.5n for n ≥ 2)

⇒ with c = 0.25a it holds for n ≥ 2 that T (n) ≥ c · n2

Theorem
Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 17 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

▶ Assumption: c = 1, one operation takes on average 10−8 sec.

▶ With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

▶ With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

▶ With 100 thousand elements 10−8 · (105)2 = 100 seconds.

▶ With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

▶ With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are

”
only“ 4 GB.

Quadratic running time problematic for large inputs

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 18 / 20

A5. Runtime Analysis: Introduction and Selection Sort Summary

A5.3 Summary

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 19 / 20

A5. Runtime Analysis: Introduction and Selection Sort Summary

Summary

▶ Runtime analysis considers bounds on the number of executed
operations.
▶ We don’t count exactly.
▶ We ignore how long each operation actually takes.
▶ Running time should be roughly proportional to the number of

operations.

▶ Selection sort has quadratic running time and performs a
linear number of swaps and a quadratic number of key
comparisons.

G. Röger (University of Basel) Algorithms and Data Structures March 6, 2024 20 / 20


	Runtime Analysis in General
	

	Example: Selection Sort
	

	Summary
	


