Algorithms and Data Structures A5. Runtime Analysis: Introduction and Selection Sort

Gabriele Röger

University of Basel

March 6, 2024

G. Röger (University of Basel)

Algorithms and Data Structures

March 6, 2024 1 / 20

Algorithms and Data Structures March 6, 2024 — A5. Runtime Analysis: Introduction and Selection Sort

A5.1 Runtime Analysis in General

A5.2 Example: Selection Sort

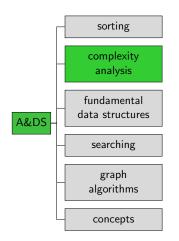
A5.3 Summary

G. Röger (University of Basel)

Algorithms and Data Structures

A5.1 Runtime Analysis in General

Content of the Course



Exact Runtime Analysis Unrealistic

- Would be nice: formula that determines for a specific input how long the computation will take.
- Exact runtime prediction is hard because of too many influencing factors.
 - Speed and architecture of the computer
 - Programming language
 - Compiler version
 - Current load (what else is running?)
 - Caching behavior

We neither can nor want to consider all this in a formula.

Runtime Analysis: 1st Simplification

Don't measure time but count operations

What is an operation?

- Ideally: one line of machine code or even more precisely one processor cycle
- Instead: constant-time operations
 - Constant time: running time independent of input.
 - Ignore runtime differences of different operations.
 - E.g. addition, assignments, branching, function call.
 - Roughly: operation = one line of code.
 - But: also consider what's behind it e.g. steps inside the called function.

Running time roughly proportional to the number of operations

Runtime Analysis: 2nd Simplification

Don't count exactly but use bounds!

- Mostly considering upper bounds How many steps does it take at most?
- Sometimes also lower bound How many steps are at least executed?

"running time" for bound on number of executed operations

Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

- T(n): running time for input of size n
- For adaptive algorithms we distinguish
 - Best case

running time for best possible input of size n

Worst case

running time for worst possible input of size n

Average case

average running time over all inputs of size n

Cost Models

Sometimes: analysis wrt. cost model

- Identify fundamental operations for the algorithm class e.g. for sorting algorithms.
 - Key comparison
 - Swap of two elements or movement of an element
- Analyze number of these operations.

Example from C++ Reference

function terr std::SOrt	
default (1)	<pre>template <class randomaccessiterator=""> void sort (RandomAccessIterator first, RandomAccessIterator last);</class></pre>
custom (2)	<pre>template <class class="" compare="" randomaccessiterator,=""> void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);</class></pre>

Sort elements in range

Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

🔳 Complexity

On average, linearithmic in the distance between *first* and *last*: Performs approximately $N^{1}\log_{2}(N)$ (where N is this distance) comparisons of elements, and up to that many element swaps (or moves).

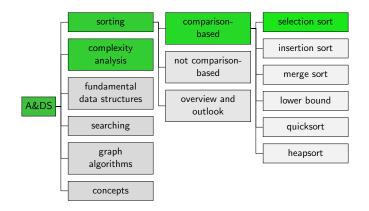
http://www.cplusplus.com/reference/algorithm/sort/

G. Röger (University of Basel)

Algorithms and Data Structures

A5.2 Example: Selection Sort

Content of the Course



Selection Sort: Algorithm

```
1 def selection_sort(array):
      n = len(array)
2
      for i in range (n - 1): # i = 0, ..., n-2
3
           # find index of minimum element at positions i, ..., n-1
4
           min_index = i
5
           for j in range(i + 1, n): \# j = i+1, \ldots, n-1
6
               if array[j] < array[min_index]:</pre>
7
                   min_index = j
8
           # swap element at position i with minimum element
9
           array[i], array[min_index] = array[min_index], array[i]
10
```

Selection Sort with Cost Model

```
1 def selection_sort(array):
2
      n = len(array)
      for i in range (n - 1): # i = 0, ..., n-2
3
           # find index of minimum element at positions i, ..., n-1
4
           min_index = i
5
           for j in range(i + 1, n): \# j = i+1, \ldots, n-1
6
               if array[j] < array[min_index]:</pre>
7
                   min_index = j
8
           # swap element at position i with minimum element
9
           array[i], array[min_index] = array[min_index], array[i]
10
```

 \rightarrow n-1 swaps of two elements ("linear") \rightarrow 0.5(n-1)n key comparisons ("quadratic")

G. Röger (University of Basel)

Selection Sort: Analysis I

We show: $T(n) \le c' \cdot n^2$ for $n \ge 1$ and some constant c'

- Outer loop (3-10) and inner loop (6-8)
- Number of operations for each iteration of the outer loop:
 - Constant a for no. of operations in lines 7 and 8
 - Constant b for no. of operations in lines 5 and 10

i
$$\#$$
 operations
0 $a(n-1)+b$
1 $a(n-2)+b$
...
n-2 $a \cdot 1+b$
Total: $T(n) = \sum_{i=0}^{n-2} (a(n-(i+1))+b)$

Selection Sort: Analysis II

Т

$$\begin{split} f(n) &= \sum_{i=0}^{n-2} (a(n-(i+1))+b) \\ &= \sum_{i=1}^{n-1} (a(n-i)+b) \\ &= a \sum_{i=1}^{n-1} (n-i)+b(n-1) \\ &= 0.5a(n-1)n+b(n-1) \\ &\le 0.5an^2+b(n-1) \\ &\le 0.5an^2+b(n-1)n \\ &\le 0.5an^2+bn^2 \\ &= (0.5a+b)n^2 \end{split}$$

 \Rightarrow with c' = (0.5a + b) it holds for $n \ge 1$ that $T(n) \le c' \cdot n^2$

Selection Sort: Analysis III

Too generous bound?

We show for $n \ge 2$: $T(n) \ge c \cdot n^2$ for some constant c

$$T(n) = \dots = 0.5a(n-1)n + b(n-1)$$

$$\geq 0.5a(n-1)n$$

$$\geq 0.25an^{2} \qquad (n-1 \geq 0.5n \text{ for } n \geq 2)$$

 \Rightarrow with c = 0.25a it holds for $n \ge 2$ that $T(n) \ge c \cdot n^2$

Theorem

Selection sort has quadratic running time, i.e., there are constants $c > 0, c' > 0, n_0 > 0$ such that for $n \ge n_0$: $cn^2 \le T(n) \le c'n^2$.

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

- Assumption: c = 1, one operation takes on average 10^{-8} sec.
- Vith 1000 elements, we wait $10^{-8} \cdot (10^3)^2 = 10^{-8} \cdot 10^6 = 10^{-2} = 0.02$ seconds.
- With 10 thousand elements, we wait $10^{-8} \cdot (10^4)^2 = 1$ second.
- With 100 thousand elements $10^{-8} \cdot (10^5)^2 = 100$ seconds.
- With 1 million elements $10^{-8} \cdot (10^6)^2$ seconds = 2.77 hours.
- With 1 billion elements 10⁻⁸ · (10⁹)² seconds = 317 years. 1 billion numbers with 4 bytes/number are "only" 4 GB.

Quadratic running time problematic for large inputs

A5.3 Summary

Summary

- Runtime analysis considers bounds on the number of executed operations.
 - We don't count exactly.
 - We ignore how long each operation actually takes.
 - Running time should be roughly proportional to the number of operations.
- Selection sort has quadratic running time and performs a linear number of swaps and a quadratic number of key comparisons.