Algorithms and Data Structures
A4. Sorting Il: Merge Sort

Gabriele Roger

University of Basel

February 29/March 6, 2024

Merge Sort

complexity
analysis

fundamental
data structures

not comparison-
based

— searching

overview and
outlook

graph
algorithms

— concepts

Merge Sort
000

Content of the Course

— selection sort

= insertion sort

- lower bound

— quicksort

-~ heapsort

Merge Sort \ Step T Sol 3 m-Up Merge Sort

[e]e] Te]

Merge Sort: Idea

m Observation: two sorted sequences can easily be combined
to a single sorted sequence.

m Empty sequences or sequences with a single element are
sorted.
m Idea for longer sequences:

m divide the input sequence into two roughly equally-sized ranges
m recursive call for each of the two ranges
m merge now sorted ranges into one

m divide-and-conquer approach

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Sort
ocooe

Merge Sort: lllustration

Merge Step
©00000

Merge Step

ort Merge Step Toy erge Sol 3ottom-Up Merge Sort
000000 00 0000

Merging the Sorted Ranges

m indices lo < mid < hi

m prerequisite: array[lo] to array[mid] and
array[mid+1] to array[hi] already sorted

m aim: array[lo] to arraylhi] sorted

m idea: process both ranges in parallel from front to end and
collect the smaller element

m use additional storage for the collected entries

T
Merge Step: Example
Array tmp has same size as input array.
initialize: i :=lo, j:=mid + 1, k :=lo

a tmp
loji mid J hi

- EELEE - - OO0

Merge Step
00000

Merge Step: Example

Array tmp has same size as input array.
initialize: i :=lo, j:=mid + 1, k :=lo

a tmp
lo,i mid J hi k
- [2fals a7] - DI
k

lo i mid J hi

S L1 B K kA R Pl I B I

afil<afj] = tmp[k] = a[]

Merge Step
00000

Merge Step: Example

Array tmp has same size as input array.

initialize: i :=lo, j:=mid + 1, k :=lo
o a tmp
o,l mid J hi k
[2]als]a]7] - L
lo i mid J hi k a[i]<a[j] = tmplk] = ai]
Eﬁlllm N
mid,i j hi k afi]<a[j] = tmplk] = ali]

RLlsA - R

Merge Step
00000

Merge Step: Example

Array tmp has same size as input array.

initialize: i :=lo, j:=mid + 1, k :=lo
o a tmp
oi mid J hi k
- [2fa]s]a]7] - - LD
lo i mid i hi k afi]<a[j] = tmp[k] = ali]
EEIIIM - -
mid,i j hi k afi]<a[j] = tmplk] = ali]
IEIEIM - [l
mid,i hi,j k afjl<ali] = tmp[k] = a[j]

RLDSJaT - Al

Merge Step
00000

Merge Step: Example

Array tmp has same size as input array.
initialize: i :=lo, j:=mid + 1, k :=lo

a .
loi mid J hi

- [2]als]al7]

lo i mid J hi

- [2fafsle]r]

mid,i j hi

IEIEIM

mid,i hi,j

IEIEIW

mld i h'J

tmp

- BIEEL
- RIAE)

afil<afj] = tmp[k] = a[]

afi]<a[j] = tmplk] = ali]

afjl<ali] = tmp[k] = a[j]

a[i]<a[j] = tmplk] = ali]

Merge Step
00000

Merge Step: Example

Array tmp has same size as input array.

initialize: i :=lo, j:=mid + 1, k :=lo
o a tmp
oi mid J hi k
[2]a]s]a]7] - - L
lo i mid J hi k ali]<a[j] = tmp[k] = ali]

- [2fafsle]r]

mid,i j hi

IEIEIM

mid,i hi,j

IEIEIW

mld i h'J

mld i hi

EEIIIM

-
R
Jalal -
Al -
Jalals]E)

afi]<a[j] = tmplk] = ali]

afjl<ali] = tmp[k] = a[j]

a[i]<a[j] = tmplk] = ali]

i>mid = tmp[k] = a[j]

Merge Step
000000

Merge Step: Algorithm

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):

i =
j =
for

for

lo

mid + 1

k in range(lo, hi + 1): # k = lo,...,h%

if j > hi or (i <= mid and array[i] <= array[jl):
tmp[k] = array[i]

i+=1

else:
tmp[k] = array[j]
=1

k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Merge Step
000000

Merge Step: Algorithm

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):

i =
j =
for

for

lo

mid + 1

k in range(lo, hi + 1): # k = lo,...,h%

if j > hi or (i <= mid and array[i] <= arrayl[jl):
tmp[k] = array[i]

i+=1

else:
tmp[k] = array[j]
=1

k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Also correct for lo = mid = hi

Merge Step
000000

Jupyter Notebook

@
_
Jupyter
o

Jupyter notebook: merge_sort.ipynb

Merge Step
00000e

Questions

N

~

Questions?

Top-Down Merge Sort

Top-Down Merge Sort
0®000000

Merge Sort: Algorithm

recursive top-down variant

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, 0, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2
//: floor division
10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Top-Down Merge Sort] m-Up Merge Sort

0O0@00000

Possible Improvements

m on short sequences, insertion sort faster than merge sort
— use insertion sort for small hi - lo

Top-Down Merge Sort 3ottom-Up Merge Sort Summar

0O0@00000

Possible Improvements

m on short sequences, insertion sort faster than merge sort
— use insertion sort for small hi - lo

m directly skip the merge step if positions lo to hi already sorted

if array[mid] <= array[mid + 1]:
return

Top-Down Merge Sort Bottom-Up Merge Sort

0O0@00000

Possible Improvements

m on short sequences, insertion sort faster than merge sort
— use insertion sort for small hi - lo

m directly skip the merge step if positions lo to hi already sorted
if array[mid] <= array[mid + 1]:
return
B copying tmp in merge takes time
— swap role of array and tmp in every recursive call

Top-Down Merge Sort Sottom-Up Merge Sort

[e]o]e] lelelele)

Merge Step: Correctness

m Invariant: at the end of each iteration of the loop:
m tmp[k] < array[m] for all i < m < mid, and
m tmp[k] < arrayl[n] for all j < n < hi.

m tmp is written from left to right.

m After the last iteration of the loop it holds for all
lo < r <'s < hithat tmp[r] <tmp[s] (= range is sorted).

Top-Down Merge Sort

Summar

0O000@000

Merge Sort: Correctness

sort_aux:

m Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

m Basis hi — lo = —1: empty range is sorted.

m Basis hi — lo = 0: range with a single element is sorted.

Top-Down Merge Sort Sottom Sort Summar

0O000@000

Merge Sort: Correctness

sort_aux:

m Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

m Basis hi — lo = —1: empty range is sorted.

m Basis hi — lo = 0: range with a single element is sorted.

m Induction hypothesis: merge sort is correct for all hi —lo < m
]

Inductive step (m—1 — m):

Top-Down Merge Sort Bottom-Up Merge Sort Summar

0O000@000

Merge Sort: Correctness

sort_aux:

m Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

Basis hi —lo = —1: empty range is sorted.
Basis hi — lo = 0: range with a single element is sorted.

Induction hypothesis: merge sort is correct for all hi —lo < m

Inductive step (m—1 — m):

Merge sort makes two recursive calls with hi —lo < |m/2],
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Top-Down Merge Sort Sottom-Up Merge Sort

0O000@000

Merge Sort: Correctness

sort_aux:

m Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

m Basis hi — lo = —1: empty range is sorted.

m Basis hi — lo = 0: range with a single element is sorted.

m Induction hypothesis: merge sort is correct for all hi —lo < m
]

Inductive step (m—1 — m):

Merge sort makes two recursive calls with hi —lo < |m/2],
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.

Top-Down Merge Sort Bottom-Up Merge Sort

0O000@000

Merge Sort: Correctness

sort_aux:

m Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

m Basis hi — lo = —1: empty range is sorted.

m Basis hi — lo = 0: range with a single element is sorted.

m Induction hypothesis: merge sort is correct for all hi —lo < m
[

Inductive step (m—1 — m):

Merge sort makes two recursive calls with hi —lo < |m/2],
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.

Merge sort: calls sort_aux for the entire range of the input,
thus at the end the entire input has been sorted.

Top-Down Merge Sort 1-Up Merge Sort Summar

00000800

Merge Sort: Properties (Slido)

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9 # //: floor division

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

Which of the following properties does merge sort
have? In-place? Adaptive? Stable?

Me ep Top-Down Merge Sort Sottom Sort Summar
oo 00000080 0000 00

Merge Sort: Properties

m not in-place: uses non-constant storage for tmp and call stack
® running time: not adaptive
(except with merge-skipping improvement)
precise analysis: later chapter
m stable: merge prefers array[i] if array[i] equals
array[j].

Top-Down Merge Sort
0000000@

Questions

N

~

Questions?

Bottom-Up Merge Sort
€000

Bottom-Up Merge Sort

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=25 hi=06

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=25 hi=06
lo=20 lo=4
mid =1 mid =5

Bottom-Up Merge Sort
0®00

Bottom-Up Variant

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=5 hi=26
mid =1 mid = 5
lo=20
mid = 3

Bottom-Up Merge Sort
0000

Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Bottom-Up Merge Sort
ocooe

Questions

N

~

Questions?

Summan
0

Summary

3ottom-Up Merge Sort Summary
o

Summary

Merge sort is a divide-and-conquer algorithm, which divides
the input sequence into two roughly equally-sized ranges.

m The merge step combines two already sorted ranges.
m Merge sort is stable, but does not work in-place.

m The top-down variant is a recursive algorithm.
]

The bottom-up variant is an iterative algorithm.

	Merge Sort
	

	Merge Step
	

	Top-Down Merge Sort
	

	Bottom-Up Merge Sort
	

	Summary
	

