Algorithms and Data Structures
A4. Sorting |I: Merge Sort

Gabriele Roger

University of Basel

February 29/March 6, 2024

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 1/23

Algorithms and Data Structures
February 29/March 6, 2024 — A4. Sorting |I: Merge Sort

A4.1 Merge Sort
A4.2 Merge Step
A4.3 Top-Down Merge Sort
A4.4 Bottom-Up Merge Sort

A4.5 Summary

A4. Sorting 1l: Merge Sort Merge Sort

A4.1 Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 3 /23

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 2 /23
A4. Sorting 1l: Merge Sort Merge Sort
Content of the Course
complexity I insertion sort
analysis not comparison-
fundamental
data structures overview and | lower bound
outlook
] searching | quicksort
|| graph — heapsort
algorithms
— concepts
G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 4 /23

A4. Sorting 1l: Merge Sort Merge Sort

Merge Sort: Idea

» Observation: two sorted sequences can easily be combined
to a single sorted sequence.

> Empty sequences or sequences with a single element are
sorted.

» Idea for longer sequences:

> divide the input sequence into two roughly equally-sized ranges
> recursive call for each of the two ranges
» merge now sorted ranges into one

» divide-and-conquer approach

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

5/

23

A4. Sorting 1l: Merge Sort

Merge Sort: lllustration

7 3 2 9 7 1 4 5
7 B2 9ff7 1 4 s
3 7|2 7 1 4 s

\3 7H2 9\7145

1 2 3 4 5 7 7 9

(Detailed animation in screen version of slides)

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Merge Sort

6 /23

A4. Sorting 1l: Merge Sort Merge Step

A4.2 Merge Step

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

7

/ 23

A4. Sorting 1l: Merge Sort

Merging the Sorted Ranges

» indices lo < mid < hi

» prerequisite: array[lo] to array[mid] and
array[mid+1] to array[hi] already sorted

» aim: array[lo] to array[hi] sorted

> idea: process both ranges in parallel from front to end and
collect the smaller element

> use additional storage for the collected entries

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Merge Step

8 /23

A4. Sorting 1l: Merge Sort Merge Step

Merge Step: Example
Array tmp has same size as input array.
initialize: i :==lo, j:=mid + 1, k:=lo

a tmp
lo,i mid J hi k
[2]a]s]e]7] - - L
lo i mid J hi k
[2]a]s]a]7] - - L

lo mid,i j hi

EEBLl - - R

alil<a[j] = tmp[k] = ali

alil<a[j] = tmp[k] = al[i

A4. Sorting 1l: Merge Sort Merge Step

Merge Step: Algorithm

1 def merge(array, tmp, lo, mid, hi):

2 i = 1lo

3 j =mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = arrayl[i]

7 i+=1

8 else:

9 tmp[k] = array([j]

10 j++=1

11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]

Also correct for lo = mid = hi

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 10 / 23

lo mid,i hi,j k afj]<ali] = tmplk] = a[j]
[2fa]sla]7]-- o [2]ae]]
lo mid i hij k afi]<al[j] = tmp[k] = ali]
lo mid i hi i>mid = tmpl[k] = alj]
G. Roger (University of Basel) Algorithms and Data Structures February 20/March 6, 2024 9/23
A4. Sorting Il: Merge Sort Merge Step

Jupyter Notebook

@
VR
Jupyter
o

Jupyter notebook: merge_sort.ipynb

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 11 /23

A4. Sorting 1l: Merge Sort Top-Down Merge Sort

A4.3 Top-Down Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 12 /23

A4. Sorting 1l: Merge Sort Top-Down Merge Sort

Merge Sort: Algorithm

recursive top-down variant

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9 # //: floor division

A4. Sorting 1l: Merge Sort Top-Down Merge Sort

Possible Improvements

» on short sequences, insertion sort faster than merge sort
— use insertion sort for small hi - lo

> directly skip the merge step if positions lo to hi already sorted

if array[mid] <= array[mid + 1]:
return

P copying tmp in merge takes time
— swap role of array and tmp in every recursive call

G. Roéger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

14 / 23

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 13 /23
A4. Sorting 1l: Merge Sort Top-Down Merge Sort

Merge Step: Correctness

» Invariant: at the end of each iteration of the loop:
» tmp[k] < array[m] for all i < m < mid, and
» tmp[k] < array([n] for all j < n < hi.

> tmp is written from left to right.

> After the last iteration of the loop it holds for all
lo < r < s < hithat tmp[r]<tmpl[s] (= range is sorted).

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

15 /

23

A4. Sorting 1l: Merge Sort Top-Down Merge Sort

Merge Sort: Correctness

sort_aux:

» Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

P Basis hi — lo = —1: empty range is sorted.
» Basis hi — lo = 0: range with a single element is sorted.
» Induction hypothesis: merge sort is correct for all hi —lo < m

» Inductive step (m—1— m):
Merge sort makes two recursive calls with hi —lo < |m/2],
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.
Merge sort: calls sort_aux for the entire range of the input,
thus at the end the entire input has been sorted.

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

16 / 23

A4. Sorting 1l: Merge Sort

Merge Sort: Properties (Slido)

Top-Down Merge Sort

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = 1o + (hi - 10) // 2

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9 # //: floor division

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge(array, tmp, lo, mid, hi)

Which of the following properties does merge sort
have? In-place? Adaptive? Stable?

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 17 / 23

A4. Sorting 1l: Merge Sort

Merge Sort: Properties

» not in-place: uses non-constant storage for tmp and call stack

P running time: not adaptive
(except with merge-skipping improvement)
precise analysis: later chapter

> stable: merge prefers array[i] if array[i] equals
array[j].

G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Top-Down Merge Sort

18 / 23

A4. Sorting 1l: Merge Sort Bottom-Up Merge Sort

A4.4 Bottom-Up Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 19 / 23

A4. Sorting 1l: Merge Sort

Bottom-Up Variant

lo=0 lo=2 lo=14 lo=26
mid = 0 mid = 2 mid=4 mid=256
hi=1 hi=3 hi=5 hi=06
lo=0 lo=4
mid = 1 mid =5
hi=3 hi=6
lo=0
mid = 3
hi=26

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Bottom-Up Merge Sort

20 / 23

A4. Sorting 1l: Merge Sort Bottom-Up Merge Sort

Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

A4. Sorting 1l: Merge Sort

A4.5 Summary

G. Roger (University of Basel) Algorithms and Data Structures

February 29/March 6, 2024

Summary

22 /23

1 def sort(array):
2 n = len(array)
3 tmp = [0] * n
4 length = 1
5 while length < n:
6 lo =0
7 while lo < n - length:
8 mid = lo + length - 1
9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length
12 length *= 2
G. Réger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 21 /23
A4. Sorting 1l: Merge Sort Summary
Summary

> Merge sort is a divide-and-conquer algorithm, which divides
the input sequence into two roughly equally-sized ranges.

» The merge step combines two already sorted ranges.
> Merge sort is stable, but does not work in-place.

» The top-down variant is a recursive algorithm.
>

The bottom-up variant is an iterative algorithm.

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 23 /23

	Merge Sort
	

	Merge Step
	

	Top-Down Merge Sort
	

	Bottom-Up Merge Sort
	

	Summary
	

