

A4.1 Merge Sort Algorithms and Data Structures February 29/March 6, 2024 3 / 23

A4. Sorting II: Merge Sort

Merge Sort

5 / 23

Merge Step

7 / 23

Merge Sort: Idea

- Observation: two sorted sequences can easily be combined to a single sorted sequence.
- Empty sequences or sequences with a single element are sorted.
- Idea for longer sequences:
 - divide the input sequence into two roughly equally-sized ranges
 - recursive call for each of the two ranges
 - merge now sorted ranges into one
- divide-and-conquer approach

G. Röger (University of Basel)

Algorithms and Data Structures February 29/March 6, 2024

A4. Sorting II: Merge Sort

Merge Sort: Illustration

Merge Sort

Merge Step: Example

Merge Step

	•	ces, insertion sort faster t sort for small hi - lo	han merge sort
	directly skip the	e merge step if positions l	o to hi already sorted
	if array retu	[mid] <= array[mid + rn	1]:
		merge takes time array and tmp in every	recursive call
G. Röger	(University of Basel)	Algorithms and Data Structures	February 29/March 6, 2024

Since the merge step is correct, at the end the entire range from lo to hi is sorted.

Merge sort: calls sort_aux for the entire range of the input, thus at the end the entire input has been sorted.

between mid + 1 and hi. (by ind. hyp.)

A4. Sorting II: Merge Sort

Possible Improvements

Top-Down Merge Sort

23

February 29/March 6, 2024

17 / 23

Bottom-Up Merge Sort

Algorithms and Data Structures

G. Röger (University of Basel)

A4. Sorting II: Merge Sort

Bottom-Up Variant $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
hi = 1 $hi = 3$ $hi = 5$ $hi = 6$	
$lo = 0 \qquad lo = 4$ $mid = 1 \qquad mid = 5$ $hi = 3 \qquad hi = 6$	
lo = 0 mid = 3 hi = 6	

A4. Sorting II: Merge Sort

Bottom-Up Merge Sort

21 / 23

Summarv

Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

1 def sort(array):

2	n = len(array)
3	tmp = [0] * n
4	length = 1
5	while length < n:
6	lo = 0
7	while lo < n - length:
8	mid = lo + length - 1
9	hi = min(lo + 2 * length - 1, n - 1)
10	merge(array, tmp, lo, mid, hi)
11	lo $+= 2 * $ length
12	<pre>length *= 2</pre>

G. Röger (University of Basel)

Algorithms and Data Structures February 29/March 6, 2024

A4. Sorting II: Merge Sort
Summary
Merge sort is a divide-and-conquer algorithm, which divides the input sequence into two roughly equally-sized ranges.
The merge step combines to already sorted ranges.
Merge sort is stable, but does not work in-place.
The top-down variant is a recursive algorithm.
The bottom-up variant is an iterative algorithm.

A4. Sorting II: Merge Sort Summary A4. Sorting II: Merge Sort Summary A4. 5 Summary S. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 202 22 / 23