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G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 2 / 23



A4. Sorting II: Merge Sort Merge Sort

A4.1 Merge Sort
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Merge Sort: Idea

▶ Observation: two sorted sequences can easily be combined
to a single sorted sequence.

▶ Empty sequences or sequences with a single element are
sorted.

▶ Idea for longer sequences:
▶ divide the input sequence into two roughly equally-sized ranges
▶ recursive call for each of the two ranges
▶ merge now sorted ranges into one

▶ divide-and-conquer approach
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Merge Sort: Illustration

7 3 2 9 7 1 4 5

7 3 2 9 7 1 4 5

3 7 2 9 7 1 4 5

3 7 2 9 7 1 4 5

2 3 7 9 7 1 4 5

...

2 3 7 9 1 4 5 7

1 2 3 4 5 7 7 9

(Detailed animation in screen version of slides)
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A4.2 Merge Step
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Merging the Sorted Ranges

▶ indices lo ≤ mid < hi

▶ prerequisite: array[lo] to array[mid] and
array[mid+1] to array[hi] already sorted

▶ aim: array[lo] bis array[hi] sorted

▶ idea: process both ranges in parallel from front to end and
collect the smaller element

▶ use additional storage for the collected entries
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Merge Step: Example

Array tmp has same size as input array.
initialize: i := lo, j := mid + 1, k := lo

a tmp
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Merge Step: Algorithm

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Also correct for lo = mid = hi
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Jupyter Notebook

Jupyter notebook: merge sort.ipynb
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A4.3 Top-Down Merge Sort
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Merge Sort: Algorithm

recursive top-down variant

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: floor division

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)
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Possible Improvements

▶ on short sequences, insertion sort faster than merge sort
→ use insertion sort for small hi - lo

▶ directly skip the merge step if positions lo to hi already sorted

if array[mid] <= array[mid + 1]:

return

▶ copying tmp in merge takes time
→ swap role of array and tmp in every recursive call
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Merge Step: Correctness

▶ Invariant: at the end of each iteration of the loop:
▶ tmp[k] ≤ array[m] for all i ≤ m ≤ mid, and
▶ tmp[k] ≤ array[n] for all j ≤ n ≤ hi.

▶ tmp is written from left to right.

▶ After the last iteration of the loop it holds for all
lo ≤ r < s ≤ hi that tmp[r]≤tmp[s] (= range is sorted).
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Merge Sort: Correctness

sort aux:

▶ Proof by induction over length hi− lo
(always 1 smaller than the number of cells in the range)

▶ Basis hi− lo = −1: empty range is sorted.

▶ Basis hi− lo = 0: range with a single element is sorted.

▶ Induction hypothesis: merge sort is correct for all hi− lo < m

▶ Inductive step (m − 1 → m):
Merge sort makes two recursive calls with hi− lo ≤ ⌊m/2⌋,
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.

Merge sort: calls sort aux for the entire range of the input,
thus at the end the entire input has been sorted.
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Merge Sort: Properties (Slido)

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: floor division

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Which of the following properties does merge sort
have? In-place? Adaptive? Stable?
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Merge Sort: Properties

▶ not in-place: uses non-constant storage for tmp and call stack

▶ running time: not adaptive
(except with merge-skipping improvement)
precise analysis: later chapter

▶ stable: merge prefers array[i] if array[i] equals
array[j].
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A4.4 Bottom-Up Merge Sort
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Bottom-Up Variant
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Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2
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A4.5 Summary
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Summary

▶ Merge sort is a divide-and-conquer algorithm, which divides
the input sequence into two roughly equally-sized ranges.

▶ The merge step combines to already sorted ranges.

▶ Merge sort is stable, but does not work in-place.

▶ The top-down variant is a recursive algorithm.

▶ The bottom-up variant is an iterative algorithm.
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