Algorithms and Data Structures
A4. Sorting Il: Merge Sort

Gabriele Roger

University of Basel

February 29/March 6, 2024

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

1/

Algorithms and Data Structures
February 29/March 6, 2024 — A4. Sorting Il: Merge Sort

A4.1 Merge Sort
A4.2 Merge Step
A4.3 Top-Down Merge Sort
A4.4 Bottom-Up Merge Sort

A4.5 Summary

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 2/23

A4. Sorting Il: Merge Sort Merge Sort

A4.1 Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 3/23

A4. Sorting Il: Merge Sort Merge Sort

Content of the Course

complexity — insertion sort
analysis not comparison-
fundamental
- data structures overview and - lower bound
outlook

o searching — quicksort

L graph — heapsort
algorithms

— concepts

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 4 /23

A4. Sorting II: Merge Sort Merge Sort

Merge Sort: Idea

» Observation: two sorted sequences can easily be combined
to a single sorted sequence.

> Empty sequences or sequences with a single element are
sorted.

> |dea for longer sequences:

» divide the input sequence into two roughly equally-sized ranges
» recursive call for each of the two ranges
> merge now sorted ranges into one

» divide-and-conquer approach

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 5/23

A4. Sorting Il: Merge Sort

Merge Sort: lllustration

7 3 2 9 7 1 4 5

7] B2 off7 1 4 s
3 7|2 [ffj7 1 4 s

|3 7||2 9|7145

1 2 3 4 5 7 7 9

(Detailed animation in screen version of slides)

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Merge Sort

6 /23

A4. Sorting Il: Merge Sort Merge Step

A4.2 Merge Step

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 7/23

A4. Sorting II: Merge Sort

Merging the Sorted Ranges

» indices lo < mid < hi

» prerequisite: array[lo] to array[mid] and
array[mid—+1] to array[hi] already sorted

» aim: array|[lo] to array[hi] sorted

> idea: process both ranges in parallel from front to end and
collect the smaller element

> use additional storage for the collected entries

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024

Merge Step

8 /

A4. Sorting Il: Merge Sort

Merge Step: Example

Array tmp has same size as input array.
initialize: i :=lo, j:=mid + 1, k := lo

a .
lo,i mid J hi

Clals]lr] -

i mid J hi

IEIEIM

mid,i j hi

IEIIIM

mid,i hi,j

IEEEIM

mld i h'J

mld i hi

EEIIIW

G. Roger (University of Basel)

tmp

-
B
HoEnal
Al -
Al] -
Jalals]E)

Algorithms and Data Structures

Merge Step

alil<alj] = tmp[k] = ali]

alil<alil = tmp[k] = afi

afj]<al[i] = tmp[k] = alj]

alil<alj] = tmp[k] = ali]

i>mid = tmp[k] = a[j]

February 29/March 6, 2024 9 /23

A4. Sorting Il: Merge Sort Merge Step

Merge Step: Algorithm

1 def merge(array, tmp, lo, mid, hi):

2 i = 1lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= arrayl[jl):
6 tmp [k] = array[il

7 i+=1

8 else:

9 tmp[k] = array[j]

10 j+=1

11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]

Also correct for lo = mid = hi

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 10 / 23

A4. Sorting Il: Merge Sort Merge Step

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: merge_sort.ipynb

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 11 /23

A4. Sorting Il: Merge Sort Top-Down Merge Sort

A4.3 Top-Down Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 12 /23

A4. Sorting Il: Merge Sort Top-Down Merge Sort

Merge Sort: Algorithm

recursive top-down variant

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1o) // 2

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9 # //: floor division

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 13 /23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Possible Improvements

P on short sequences, insertion sort faster than merge sort
— use insertion sort for small hi - lo

» directly skip the merge step if positions lo to hi already sorted

if array[mid] <= array[mid + 1]:
return

P copying tmp in merge takes time
— swap role of array and tmp in every recursive call

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 14 /23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Step: Correctness

P Invariant: at the end of each iteration of the loop:
» tmp[k] < array[m] for all i < m < mid, and
» tmp[k] < array([n] for all j < n < hi.

> tmp is written from left to right.

> After the last iteration of the loop it holds for all
lo < r <s < hithat tmp[r] <tmp[s] (= range is sorted).

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 15 /23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Correctness

sort_aux:

» Proof by induction over length hi — lo
(always 1 smaller than the number of cells in the range)

P Basis hi —lo = —1: empty range is sorted.
> Basis hi — lo = 0: range with a single element is sorted.
» Induction hypothesis: merge sort is correct for all hi —lo < m

» Inductive step (m—1 — m):
Merge sort makes two recursive calls with hi —lo < |m/2],
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.

Merge sort: calls sort_aux for the entire range of the input,
thus at the end the entire input has been sorted.

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 16 / 23

A4. Sorting Il: Merge Sort

Merge Sort: Properties (Slido)

Top-Down Merge Sort

def sort(array):

tmp = [0] * len(array) # [0,...,0] with same size as array

sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9 # //: floor division

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

Which of the following properties does merge sort
have? In-place? Adaptive? Stable?

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 17 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Properties

» not in-place: uses non-constant storage for tmp and call stack

P running time: not adaptive
(except with merge-skipping improvement)
precise analysis: later chapter

> stable: merge prefers array[i] if array[i] equals
array[j].

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 18 / 23

A4. Sorting Il: Merge Sort Bottom-Up Merge Sort

A4.4 Bottom-Up Merge Sort

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 19 / 23

A4. Sorting Il: Merge Sort Bottom-Up Merge Sort

Bottom-Up Variant

lo=20 lo=2 lo=4 lo=16
mid =0 mid = 2 mid=4 mid =06
hi=1 hi=3 hi=5 hi=26
mid = 1 mid =5
hi=3 hi==6
lo=0
mid =3
hi=26

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 20 /23

A4. Sorting Il: Merge Sort Bottom-Up Merge Sort

Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 21 /23

A4. Sorting Il: Merge Sort Summary

A4.5 Summary

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 22 /23

A4. Sorting II: Merge Sort Summary

Summary

> Merge sort is a divide-and-conquer algorithm, which divides
the input sequence into two roughly equally-sized ranges.

P> The merge step combines two already sorted ranges.
P> Merge sort is stable, but does not work in-place.
» The top-down variant is a recursive algorithm.

» The bottom-up variant is an iterative algorithm.

G. Roger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 23 /23

	Merge Sort
	

	Merge Step
	

	Top-Down Merge Sort
	

	Bottom-Up Merge Sort
	

	Summary
	

