
Algorithms and Data Structures
A4. Sorting II: Merge Sort

Gabriele Röger

University of Basel

February 29/March 6, 2024

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 1 / 23

Algorithms and Data Structures
February 29/March 6, 2024 — A4. Sorting II: Merge Sort

A4.1 Merge Sort

A4.2 Merge Step

A4.3 Top-Down Merge Sort

A4.4 Bottom-Up Merge Sort

A4.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 2 / 23

A4. Sorting II: Merge Sort Merge Sort

A4.1 Merge Sort

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 3 / 23

A4. Sorting II: Merge Sort Merge Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

lower bound

quicksort

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 4 / 23

A4. Sorting II: Merge Sort Merge Sort

Merge Sort: Idea

▶ Observation: two sorted sequences can easily be combined
to a single sorted sequence.

▶ Empty sequences or sequences with a single element are
sorted.

▶ Idea for longer sequences:
▶ divide the input sequence into two roughly equally-sized ranges
▶ recursive call for each of the two ranges
▶ merge now sorted ranges into one

▶ divide-and-conquer approach

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 5 / 23

A4. Sorting II: Merge Sort Merge Sort

Merge Sort: Illustration

7 3 2 9 7 1 4 5

7 3 2 9 7 1 4 5

3 7 2 9 7 1 4 5

3 7 2 9 7 1 4 5

2 3 7 9 7 1 4 5

...

2 3 7 9 1 4 5 7

1 2 3 4 5 7 7 9

(Detailed animation in screen version of slides)

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 6 / 23

A4. Sorting II: Merge Sort Merge Step

A4.2 Merge Step

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 7 / 23

A4. Sorting II: Merge Sort Merge Step

Merging the Sorted Ranges

▶ indices lo ≤ mid < hi

▶ prerequisite: array[lo] to array[mid] and
array[mid+1] to array[hi] already sorted

▶ aim: array[lo] bis array[hi] sorted

▶ idea: process both ranges in parallel from front to end and
collect the smaller element

▶ use additional storage for the collected entries

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 8 / 23

A4. Sorting II: Merge Sort Merge Step

Merge Step: Example

Array tmp has same size as input array.
initialize: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 9 / 23

A4. Sorting II: Merge Sort Merge Step

Merge Step: Algorithm

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Also correct for lo = mid = hi

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 10 / 23

A4. Sorting II: Merge Sort Merge Step

Jupyter Notebook

Jupyter notebook: merge sort.ipynb

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 11 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

A4.3 Top-Down Merge Sort

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 12 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Algorithm

recursive top-down variant

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: floor division

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 13 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Possible Improvements

▶ on short sequences, insertion sort faster than merge sort
→ use insertion sort for small hi - lo

▶ directly skip the merge step if positions lo to hi already sorted

if array[mid] <= array[mid + 1]:

return

▶ copying tmp in merge takes time
→ swap role of array and tmp in every recursive call

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 14 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Step: Correctness

▶ Invariant: at the end of each iteration of the loop:
▶ tmp[k] ≤ array[m] for all i ≤ m ≤ mid, and
▶ tmp[k] ≤ array[n] for all j ≤ n ≤ hi.

▶ tmp is written from left to right.

▶ After the last iteration of the loop it holds for all
lo ≤ r < s ≤ hi that tmp[r]≤tmp[s] (= range is sorted).

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 15 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Correctness

sort aux:

▶ Proof by induction over length hi− lo
(always 1 smaller than the number of cells in the range)

▶ Basis hi− lo = −1: empty range is sorted.

▶ Basis hi− lo = 0: range with a single element is sorted.

▶ Induction hypothesis: merge sort is correct for all hi− lo < m

▶ Inductive step (m − 1 → m):
Merge sort makes two recursive calls with hi− lo ≤ ⌊m/2⌋,
afterwards the input is sorted between lo and mid and
between mid + 1 and hi. (by ind. hyp.)

Since the merge step is correct, at the end the entire range
from lo to hi is sorted.

Merge sort: calls sort aux for the entire range of the input,
thus at the end the entire input has been sorted.

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 16 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Properties (Slido)

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: floor division

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Which of the following properties does merge sort
have? In-place? Adaptive? Stable?

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 17 / 23

A4. Sorting II: Merge Sort Top-Down Merge Sort

Merge Sort: Properties

▶ not in-place: uses non-constant storage for tmp and call stack

▶ running time: not adaptive
(except with merge-skipping improvement)
precise analysis: later chapter

▶ stable: merge prefers array[i] if array[i] equals
array[j].

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 18 / 23

A4. Sorting II: Merge Sort Bottom-Up Merge Sort

A4.4 Bottom-Up Merge Sort

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 19 / 23

A4. Sorting II: Merge Sort Bottom-Up Merge Sort

Bottom-Up Variant

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

lo = 0
mid = 1
hi = 3

lo = 4
mid = 5
hi = 6

lo = 0
mid = 3
hi = 6

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 20 / 23

A4. Sorting II: Merge Sort Bottom-Up Merge Sort

Bottom-Up Merge Sort: Algorithm

iterative bottom-up variant

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 21 / 23

A4. Sorting II: Merge Sort Summary

A4.5 Summary

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 22 / 23

A4. Sorting II: Merge Sort Summary

Summary

▶ Merge sort is a divide-and-conquer algorithm, which divides
the input sequence into two roughly equally-sized ranges.

▶ The merge step combines to already sorted ranges.

▶ Merge sort is stable, but does not work in-place.

▶ The top-down variant is a recursive algorithm.

▶ The bottom-up variant is an iterative algorithm.

G. Röger (University of Basel) Algorithms and Data Structures February 29/March 6, 2024 23 / 23

	Merge Sort
	

	Merge Step
	

	Top-Down Merge Sort
	

	Bottom-Up Merge Sort
	

	Summary
	

