
Algorithms and Data Structures
A3. Sorting I: Selection and Insertion Sort

Gabriele Röger

University of Basel

February 29, 2024

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 1 / 28

Algorithms and Data Structures
February 29, 2024 — A3. Sorting I: Selection and Insertion Sort

A3.1 Sorting

A3.2 Selection Sort

A3.3 Insertion Sort

A3.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 2 / 28

A3. Sorting I: Selection and Insertion Sort Sorting

A3.1 Sorting

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 3 / 28

A3. Sorting I: Selection and Insertion Sort Sorting

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 4 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Relevance

sorting data important for many applications, such as
▶ sorted presentation (e.g. on website)

▶ products sorted by price, rating, . . .
▶ account transactions sorted by transaction date

▶ preprocessing for many efficient search algorithms
▶ How quickly can you find a number in a (physical) telephone

book? How quickly could you do so if the entries were not
sorted?

▶ subroutine of many other algorithms
▶ e.g. a program that renders layered graphical objects might sort

them to determine where objects are covered by other objects

Journal “Computing in Science & Engineering” lists Quicksort as
one of the 10 most important algorithms of the 20th century.

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 5 / 28

A3. Sorting I: Selection and Insertion Sort Sorting

Sorting Problem

Sorting Problem

Input

▶ sequence of n elements e1, . . . , en
▶ each element ei has key ki = key(ei )

▶ partial order ≤ on the keys
reflexive: k ≤ k
transitive: k ≤ k ′ and k ′ ≤ k ′′ ⇒ k ≤ k ′′

antisymmetric: k ≤ k ′ and k ′ ≤ k ⇒ k = k ′

Output

▶ Sequence of the same elements sorted
according to the ordering relation on its keys

Notation: also e ≤ e ′ for key(e) ≤ key(e ′)

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 6 / 28

A3. Sorting I: Selection and Insertion Sort Sorting

Sorting Problem: Examples

Example

Input: ⟨3, 6, 2, 3, 1⟩, key(e) = e, ≤ on the integers
Output: ⟨1, 2, 3, 3, 6⟩

Example

Input: list of all students of the Univ. of Basel,
Input: key(e) = ⟨place of residence of e⟩, lexicographic order
Output: list of all students, sorted by their place of residence

Is the output uniquely defined?

In this course: mostly integers, key(e) = e and ≤ on integers

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 7 / 28

A3. Sorting I: Selection and Insertion Sort Sorting

Interesting Properties of Sorting Algorithms

▶ running time: how many key comparisons and swaps of
elements are executed? adaptive: algorithms faster if input
already (partially) sorted

▶ space consumption: how much space is used in addition to the
space occupied by the input sequence (explicitly or in call
stack)?
in-place: needs no additional storage beyond the input array
and a constant amount of space
(independent of the input size)

▶ stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

▶ comparison-based: uses only key comparisons and swaps of
elements

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 8 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 9 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

A3.2 Selection Sort

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 10 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

lower bound

quicksort

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 11 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Informally

0 1 2 3 4 5 6 7

n = 8

▶ identify smallest element at positions 0, . . . , n − 1
and swap it to position 0

▶ identify smallest element at positions 1, . . . , n − 1
and swap it to position 1

▶ . . .

▶ identify smallest element at positions n − 2, n − 1
and swap it to position n - 2

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 12 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 13 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 14 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5
3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 15 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Correctness

Correctness of an algorithm

An algorithm for a computational problem is correct if for every
problem instance provided as input, it

▶ halts, i.e. it finishes its computation in finite time, and

▶ determines a correct solution to the problem instance.

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 16 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Correctness of Selection Sort

▶ invariant: property that is true during the entire execution of
the algorithm

▶ invariant 1: at the end of each iteration of the outer loop, all
elements at positions ≤ i are sorted.

▶ Invariant 2: at the end of each iteration of the outer loop,
none of the elements at positions ≤ i is (strictly) larger than
an element at a position > i .

▶ correctness of invariants by (joint) induction

▶ after the last iteration, all elements except for the last one are
in the correct order and the last one is not smaller than the
second-last. → entire sequence sorted

▶ Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 17 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Properties of Selection Sort

▶ in-place: additional storage does not depend on input size

▶ running time: does only depend on the size of the input
(not adaptive)
exact analysis: later chapter

▶ not stable: can swap the element at position i behind an
element with an equal key, which will not be “repaired” later.

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 18 / 28

A3. Sorting I: Selection and Insertion Sort Selection Sort

Jupyter Notebook

Jupyter notebook: selection sort.ipynb

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 19 / 28

A3. Sorting I: Selection and Insertion Sort Insertion Sort

A3.3 Insertion Sort

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 20 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

lower bound

quicksort

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 21 / 28

A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Informally

▶ similar to common method for sorting a hand of playing cards

▶ elements subsequently moved to correct position in the
already sorted part of the sequence

▶ larger elements correspondingly moved to the right

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 22 / 28

A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 23 / 28

A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Algorithm

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 j = i

7 while j > 0 and array[j - 1] > array[j]:

8 # not yet at final position.

9 # swap array[j] and array[j-1]

10 array[j], array[j-1] = array[j-1], array[j]

11 j -= 1

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 24 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Algorithm (Slightly Faster)

previous variant: most assignments to array[j-1] unnecessary

1 def insertion_sort(array):

2 for i in range(1, len(array)):

3 val = array[i]

4 j = i

5 while j > 0 and array[j - 1] > val:

6 array[j] = array[j - 1]

7 j -= 1

8 array[j] = val

runtime analysis (later): no fundamental difference
nevertheless: preferable if direct assignment possible

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 25 / 28

A3. Sorting I: Selection and Insertion Sort Insertion Sort

Properties of Insertion Sort

▶ in-place: additional storage does not depend on input size

▶ running time: adaptive for partially sorted inputs
▶ with already sorted input, immediate exit from inner loop
▶ with reversely sorted input, every element moved step-by-step

to the front

exact analysis: later

▶ stable: elements only moved to the left as long it is swapped
with a strictly larger element.
→ cannot change relative order with an equal element

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 26 / 28

A3. Sorting I: Selection and Insertion Sort Summary

A3.4 Summary

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 27 / 28

A3. Sorting I: Selection and Insertion Sort Summary

Summary

▶ selection sort and insertion sort are two simple sorting
algorithms.

▶ selection sort builds the sorted sequence from left to right by
successively swapping a minimal element from the unsorted
range to the end of the sorted range.

▶ insertion sort considers the elements from left to right and
moves them to the correct position in the already sorted range
at the beginning of the sequence.

G. Röger (University of Basel) Algorithms and Data Structures February 29, 2024 28 / 28


	Sorting 
	

	Selection Sort
	

	Insertion Sort
	

	Summary
	


