Theory of Computer Science E2. GOTO Computability & Comparsion to Turing Computability

Gabriele Röger

University of Basel

May 24, 2023

GOTO vs. WHILE

WHILE vs. Turing

Turing vs. GOTC

Summary 00

GOTO Programs

Motivation

We already know: WHILE programs are strictly more powerful than LOOP programs.

Motivation

We already know: WHILE programs are strictly more powerful than LOOP programs.

How do DTMs relate to LOOP and WHILE programs?

To answer this question, we make a detour over one more programming formalism, GOTO programs.

Motivation

We already know: WHILE programs are strictly more powerful than LOOP programs.

How do DTMs relate to LOOP and WHILE programs?

To answer this question, we make a detour over one more programming formalism, GOTO programs.

We will establish:

- WHILE programs are at least as powerful as GOTO programs.
- DTMs are at least as powerful as WHILE programs.
- GOTO programs are at least as powerful as DTMs.
- ⇒ Turing-computable = WHILE-computable = GOTO-computable

GOTO Programs: Syntax

Definition (GOTO Program)

A GOTO program is given by a finite sequence $L_1 : A_1, L_2 : A_2, \ldots, L_n : A_n$ of labels and statements.

Statements are of the following form:

- $x_i := x_j + c$ for every $i, j, c \in \mathbb{N}_0$ (addition)
- $x_i := x_j c$ for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- HALT (end of program)
- GOTO L_j for $1 \le j \le n$ (jump)
- IF $x_i = c$ THEN GOTO L_j for $i, c \in \mathbb{N}_0$,
 - $1 \le j \le n$ (conditional jump)

GOTO Programs: Semantics

Definition (Semantics of GOTO Programs)

- Input, output and variables work exactly as in LOOP and WHILE programs.
- Addition and modified subtraction work exactly as in LOOP and WHILE programs.
- Execution begins with the statement A_1 .
- After executing A_i, the statement A_{i+1} is executed. (If i = n, execution finishes.)
- exceptions to the previous rule:
 - HALT stops the execution of the program.
 - After GOTO L_j execution continues with statement A_j.
 - After IF x_i = c THEN GOTO L_j execution continues with A_j if variable x_i currently holds the value c.

WHILE vs. Turing

Turing vs. GOTC

Summary 00

GOTO-Computable Functions

Definition (GOTO-Computable)

A function $f : \mathbb{N}_0^k \to \mathbb{N}_0$ is called GOTO-computable if a GOTO program that computes f exists.

GOTO vs. WHILE

WHILE vs. Turing 00000000 Turing vs. GOTC

Summary 00

Questions

Questions?

GOTO vs. WHILE

WHILE vs. Turing

Turing vs. GOTC

Summary 00

GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Theorem

Every GOTO-computable function is WHILE-computable.

If we allow IF statements, a single WHILE loop is sufficient for this.

(We will discuss the converse statement later.)

. . .

GOTO-Computability vs. WHILE-Computability

Proof sketch.

Given any GOTO program, we construct an equivalent WHILE program with a single WHILE loop (and IF statements).

Ideas:

- Use a fresh variable to store the number of the statement to be executed next.
 - The variable of course has the form x_i , but for readability we write it as *pc* for "program counter".
- GOTO is simulated as an assignment to *pc*.
- If *pc* has the value 0, the program terminates.

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Let $L_1 : A_1, L_2 : A_2, \ldots, L_n : A_n$ be the given GOTO program.

basic structure of the WHILE program:

```
pc := 1;

WHILE pc \neq 0 DO

IF pc = 1 THEN (translation of A_1) END;

...

IF pc = n THEN (translation of A_n) END;

IF pc = n + 1 THEN pc := 0 END

END
```

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Translation of the individual statements:

• $x_i := x_j + c$ $\rightsquigarrow x_i := x_j + c; pc := pc + 1$ • $x_i := x_j - c$ $\rightsquigarrow x_i := x_j - c; pc := pc + 1$ • HALT

$$\rightsquigarrow pc := 0$$

- GOTO L_j
 - $\rightsquigarrow pc := j$
- IF $x_i = c$ THEN GOTO L_j

 $\rightsquigarrow pc := pc + 1$; IF $x_i = c$ THEN pc := j END

GOTO vs. WHILE

WHILE vs. Turing 00000000 Turing vs. GOTC

Summary 00

Questions

Questions?

GOTO vs. WHILE 000000 WHILE vs. Turing

Turing vs. GOTC

Summary 00

WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Theorem

Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)

WHILE-Computability vs. Turing-Computability

Proof sketch.

Given any WHILE program, we construct an equivalent deterministic Turing machine.

Let x_1, \ldots, x_k be the input variables of the WHILE program, and let x_0, \ldots, x_m be all used variables.

General ideas:

- The DTM simulates the individual execution steps of the WHILE program.
- Before and after each WHILE program step the tape contains the word bin(n₀)#bin(n₁)#...#bin(n_m), where n_i is the value of WHILE program variable x_i.
- It is enough to simulate "minimalistic" WHILE programs (x_i := x_i + 1, x_i := x_i - 1, composition, WHILE loop).

. . .

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

- The DTM consists of three sequential parts:
 - initialization:
 - Write 0# in front of the used part of the tape (move existing content 2 positions to the right).
 - (m-k) times, write #0 behind the used part of the tape.
 - execution:

Simulate the WHILE program (see next slide).

- clean-up:
 - Replace all symbols starting from the first # with □, then move to the first tape cell.

. . .

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i + 1$:

- Move to the first tape cell.
- **2** (i+1) times: move right until **#** or \Box is reached.
- Move one step to the left.
- \rightsquigarrow We are now on the last digit of the encoding of x_i .
- Execute DTM for increment by 1. (Most difficult part: "make room" if the number of binary digits increases.)

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i - 1$:

- Move to the last digit of x_i (see previous slide).
- ② Test if the digit is a 0 and the symbol to its left is # or □. If so: done.
- Otherwise: execute DTM for decrement by 1. (Most difficult part: "contract" the tape if the decrement reduces the number of digits.)

. . .

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of P_1 ; P_2 :

- **Q** Recursively build DTMs M_1 for P_1 and M_2 for P_2 .
- Combine these to a DTM for P₁; P₂ by letting all transitions to end states of M₁ instead go to the start state of M₂.

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

- Simulation of WHILE $x_i \neq 0$ DO *P* END:
 - Recursively build DTM M for P.
 - Solution Build a DTM M' for WHILE $x_i \neq 0$ DO P END that works as follows:
 - Move to the last digit of x_i .
 - ② Test if that symbol is 0 and the symbol to its left is # or □. If so: done.
 - Otherwise execute *M*, where all transitions to end states of *M* are replaced by transitions to the start state of *M'*.

GOTO vs. WHILE 000000 WHILE vs. Turing 00000000 Turing vs. GOTO

Summary 00

Turing vs. GOTO

Turing-Computability vs. GOTO-Computability

Theorem (Turing-Computability vs. GOTO-Computability)

Every Turing-computable numerical function is GOTO-computable.

Proof sketch.

- Represent TM configuration (x, q, y) with three numbers, one for x, one for q and one for y.
- The tape content can be accessed and modified using DIV and MOD operations, which are GOTO-computable.
- For each transition, implement the corresponding modification of the configuration in terms of the three numbers.
- Use "IF ... GOTO" statements for each tape symbol and state to jump to the implementation of the corresponding transition.

GOTO Programs	GOTO vs. WHILE	WHILE vs. Turing	Turing vs. GOTO	Summary
000000	000000	00000000	00●0	00
Final Result				

Corollary

Let $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ be a function.

The following statements are equivalent:

- f is Turing-computable.
- f is WHILE-computable.
- f is GOTO-computable.

Moreover:

- Every LOOP-computable function is Turing-/WHILE-/GOTO-computable.
- The converse is not true in general.

GOTO vs. WHILE

WHILE vs. Turing

Turing vs. GOTO 000● Summary 00

Questions

Questions?

GOTO vs. WHILE

WHILE vs. Turing

Turing vs. GOTC

Summary ●○

Summary

Summary

results of the investigation:

- another new model of computation: GOTO programs
- Turing machines, WHILE and GOTO programs are equally powerful.
 - Whenever we said "Turing-computable" or "computable" in parts C or D, we could equally have said "WHILE-computable" or "GOTO-computable".
- LOOP programs are strictly less powerful.