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Motivation

We already know: WHILE programs are strictly more powerful
than LOOP programs.

How do DTMs relate to LOOP and WHILE programs?

To answer this question, we make a detour
over one more programming formalism, GOTO programs.

We will establish:

▶ WHILE programs are at least as powerful as GOTO programs.

▶ DTMs are at least as powerful as WHILE programs.

▶ GOTO programs are at least as powerful as DTMs.

⇒ Turing-computable = WHILE-computable =
GOTO-computable
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GOTO Programs: Syntax

Definition (GOTO Program)

A GOTO program is given by a finite sequence
L1 : A1, L2 : A2, . . . , Ln : An

of labels and statements.

Statements are of the following form:

▶ xi := xj + c for every i , j , c ∈ N0 (addition)

▶ xi := xj − c for every i , j , c ∈ N0 (modified subtraction)

▶ HALT (end of program)

▶ GOTO Lj for 1 ≤ j ≤ n (jump)

▶ IF xi = c THEN GOTO Lj for i , c ∈ N0,
1 ≤ j ≤ n (conditional jump)
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GOTO Programs: Semantics

Definition (Semantics of GOTO Programs)
▶ Input, output and variables work exactly

as in LOOP and WHILE programs.

▶ Addition and modified subtraction work exactly
as in LOOP and WHILE programs.

▶ Execution begins with the statement A1.

▶ After executing Ai , the statement Ai+1 is executed.
(If i = n, execution finishes.)

▶ exceptions to the previous rule:
▶ HALT stops the execution of the program.
▶ After GOTO Lj execution continues with statement Aj .
▶ After IF xi = c THEN GOTO Lj execution continues

with Aj if variable xi currently holds the value c .
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GOTO-Computable Functions

Definition (GOTO-Computable)

A function f : Nk
0 → N0 is called GOTO-computable

if a GOTO program that computes f exists.
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E2.2 GOTO vs. WHILE
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GOTO-Computability vs. WHILE-Computability

Theorem
Every GOTO-computable function is WHILE-computable.

If we allow IF statements, a single WHILE loop is sufficient for this.

(We will discuss the converse statement later.)
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GOTO-Computability vs. WHILE-Computability

Proof sketch.
Given any GOTO program, we construct an equivalent
WHILE program with a single WHILE loop (and IF statements).

Ideas:

▶ Use a fresh variable to store the number of the statement
to be executed next.

⇝ The variable of course has the form xi , but for readability
we write it as pc for “program counter”.

▶ GOTO is simulated as an assignment to pc.

▶ If pc has the value 0, the program terminates.

. . .
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GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Let L1 : A1, L2 : A2, . . . , Ln : An be the given GOTO program.

basic structure of the WHILE program:
pc := 1;
WHILE pc ̸= 0 DO

IF pc = 1 THEN (translation of A1) END;
. . .
IF pc = n THEN (translation of An) END;
IF pc = n + 1 THEN pc := 0 END

END

. . .
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GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Translation of the individual statements:

▶ xi := xj + c
⇝ xi := xj + c ; pc := pc+ 1

▶ xi := xj − c
⇝ xi := xj − c ; pc := pc+ 1

▶ HALT
⇝ pc := 0

▶ GOTO Lj
⇝ pc := j

▶ IF xi = c THEN GOTO Lj
⇝ pc := pc + 1; IF xi = c THEN pc := j END
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E2.3 WHILE vs. Turing
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WHILE-Computability vs. Turing-Computability

Theorem
Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)
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WHILE-Computability vs. Turing-Computability

Proof sketch.
Given any WHILE program, we construct an equivalent
deterministic Turing machine.

Let x1, . . . , xk be the input variables of the WHILE program,
and let x0, . . . , xm be all used variables.

General ideas:

▶ The DTM simulates the individual execution steps
of the WHILE program.

▶ Before and after each WHILE program step
the tape contains the word bin(n0)#bin(n1)# . . . #bin(nm),
where ni is the value of WHILE program variable xi .

▶ It is enough to simulate “minimalistic” WHILE programs
(xi := xi + 1, xi := xi − 1, composition, WHILE loop).

. . .
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WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:
▶ initialization:

▶ Write 0# in front of the used part of the tape
(move existing content 2 positions to the right).

▶ (m − k) times, write #0 behind the used part of the tape.

▶ execution:
Simulate the WHILE program (see next slide).

▶ clean-up:
▶ Replace all symbols starting from the first # with □,

then move to the first tape cell.

. . .
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WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi + 1:

1 Move to the first tape cell.

2 (i + 1) times: move right until # or □ is reached.

3 Move one step to the left.

⇝ We are now on the last digit of the encoding of xi .

4 Execute DTM for increment by 1. (Most difficult part:
“make room” if the number of binary digits increases.)

. . .
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WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi − 1:

1 Move to the last digit of xi (see previous slide).

2 Test if the digit is a 0 and the symbol
to its left is # or □. If so: done.

3 Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement
reduces the number of digits.)

. . .
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WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of P1; P2:

1 Recursively build DTMs M1 for P1 and M2 for P2.

2 Combine these to a DTM for P1; P2

by letting all transitions to end states of M1

instead go to the start state of M2.

. . .
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WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of WHILE xi ̸= 0 DO P END:

1 Recursively build DTM M for P.

2 Build a DTM M ′ for WHILE xi ̸= 0 DO P END
that works as follows:

1 Move to the last digit of xi .
2 Test if that symbol is 0 and the symbol to its left is # or □.

If so: done.
3 Otherwise execute M, where all transitions to end states of M

are replaced by transitions to the start state of M ′.
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E2.4 Turing vs. GOTO
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Turing-Computability vs. GOTO-Computability

Theorem (Turing-Computability vs. GOTO-Computability)

Every Turing-computable numerical function is GOTO-computable.

Proof sketch.
▶ Represent TM configuration (x , q, y) with three numbers, one

for x , one for q and one for y .

▶ The tape content can be accessed and modified using DIV
and MOD operations, which are GOTO-computable.

▶ For each transition, implement the corresponding modification
of the configuration in terms of the three numbers.

▶ Use “IF . . . GOTO” statements for each tape symbol and
state to jump to the implementation of the corresponding
transition.
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Final Result

Corollary

Let f : Nk
0 →p N0 be a function.

The following statements are equivalent:

▶ f is Turing-computable.

▶ f is WHILE-computable.

▶ f is GOTO-computable.

Moreover:

▶ Every LOOP-computable function
is Turing-/WHILE-/GOTO-computable.

▶ The converse is not true in general.
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Summary

results of the investigation:

▶ another new model of computation: GOTO programs

▶ Turing machines, WHILE and GOTO programs
are equally powerful.
▶ Whenever we said “Turing-computable” or “computable” in

parts C or D, we could equally have said “WHILE-computable”
or “GOTO-computable”.

▶ LOOP programs are strictly less powerful.
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