
Theory of Computer Science
E2. GOTO Computability & Comparsion to Turing

Computability

Gabriele Röger

University of Basel

May 24, 2023

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 1 / 24

Theory of Computer Science
May 24, 2023 — E2. GOTO Computability & Comparsion to Turing Computability

E2.1 GOTO Programs

E2.2 GOTO vs. WHILE

E2.3 WHILE vs. Turing

E2.4 Turing vs. GOTO

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 2 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO Programs

E2.1 GOTO Programs

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 3 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO Programs

Motivation

We already know: WHILE programs are strictly more powerful
than LOOP programs.

How do DTMs relate to LOOP and WHILE programs?

To answer this question, we make a detour
over one more programming formalism, GOTO programs.

We will establish:

▶ WHILE programs are at least as powerful as GOTO programs.

▶ DTMs are at least as powerful as WHILE programs.

▶ GOTO programs are at least as powerful as DTMs.

⇒ Turing-computable = WHILE-computable =
GOTO-computable

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 4 / 24



E2. GOTO Computability & Comparsion to Turing Computability GOTO Programs

GOTO Programs: Syntax

Definition (GOTO Program)

A GOTO program is given by a finite sequence
L1 : A1, L2 : A2, . . . , Ln : An

of labels and statements.

Statements are of the following form:

▶ xi := xj + c for every i , j , c ∈ N0 (addition)

▶ xi := xj − c for every i , j , c ∈ N0 (modified subtraction)

▶ HALT (end of program)

▶ GOTO Lj for 1 ≤ j ≤ n (jump)

▶ IF xi = c THEN GOTO Lj for i , c ∈ N0,
1 ≤ j ≤ n (conditional jump)

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 5 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO Programs

GOTO Programs: Semantics

Definition (Semantics of GOTO Programs)
▶ Input, output and variables work exactly

as in LOOP and WHILE programs.

▶ Addition and modified subtraction work exactly
as in LOOP and WHILE programs.

▶ Execution begins with the statement A1.

▶ After executing Ai , the statement Ai+1 is executed.
(If i = n, execution finishes.)

▶ exceptions to the previous rule:
▶ HALT stops the execution of the program.
▶ After GOTO Lj execution continues with statement Aj .
▶ After IF xi = c THEN GOTO Lj execution continues

with Aj if variable xi currently holds the value c .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 6 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO Programs

GOTO-Computable Functions

Definition (GOTO-Computable)

A function f : Nk
0 → N0 is called GOTO-computable

if a GOTO program that computes f exists.

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 7 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO vs. WHILE

E2.2 GOTO vs. WHILE

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 8 / 24



E2. GOTO Computability & Comparsion to Turing Computability GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Theorem
Every GOTO-computable function is WHILE-computable.

If we allow IF statements, a single WHILE loop is sufficient for this.

(We will discuss the converse statement later.)

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 9 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Proof sketch.
Given any GOTO program, we construct an equivalent
WHILE program with a single WHILE loop (and IF statements).

Ideas:

▶ Use a fresh variable to store the number of the statement
to be executed next.

⇝ The variable of course has the form xi , but for readability
we write it as pc for “program counter”.

▶ GOTO is simulated as an assignment to pc.

▶ If pc has the value 0, the program terminates.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 10 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Let L1 : A1, L2 : A2, . . . , Ln : An be the given GOTO program.

basic structure of the WHILE program:
pc := 1;
WHILE pc ̸= 0 DO

IF pc = 1 THEN (translation of A1) END;
. . .
IF pc = n THEN (translation of An) END;
IF pc = n + 1 THEN pc := 0 END

END

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 11 / 24

E2. GOTO Computability & Comparsion to Turing Computability GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Translation of the individual statements:

▶ xi := xj + c
⇝ xi := xj + c ; pc := pc+ 1

▶ xi := xj − c
⇝ xi := xj − c ; pc := pc+ 1

▶ HALT
⇝ pc := 0

▶ GOTO Lj
⇝ pc := j

▶ IF xi = c THEN GOTO Lj
⇝ pc := pc + 1; IF xi = c THEN pc := j END

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 12 / 24



E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

E2.3 WHILE vs. Turing

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 13 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Theorem
Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 14 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch.
Given any WHILE program, we construct an equivalent
deterministic Turing machine.

Let x1, . . . , xk be the input variables of the WHILE program,
and let x0, . . . , xm be all used variables.

General ideas:

▶ The DTM simulates the individual execution steps
of the WHILE program.

▶ Before and after each WHILE program step
the tape contains the word bin(n0)#bin(n1)# . . . #bin(nm),
where ni is the value of WHILE program variable xi .

▶ It is enough to simulate “minimalistic” WHILE programs
(xi := xi + 1, xi := xi − 1, composition, WHILE loop).

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 15 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:
▶ initialization:

▶ Write 0# in front of the used part of the tape
(move existing content 2 positions to the right).

▶ (m − k) times, write #0 behind the used part of the tape.

▶ execution:
Simulate the WHILE program (see next slide).

▶ clean-up:
▶ Replace all symbols starting from the first # with □,

then move to the first tape cell.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 16 / 24



E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi + 1:

1 Move to the first tape cell.

2 (i + 1) times: move right until # or □ is reached.

3 Move one step to the left.

⇝ We are now on the last digit of the encoding of xi .

4 Execute DTM for increment by 1. (Most difficult part:
“make room” if the number of binary digits increases.)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 17 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi − 1:

1 Move to the last digit of xi (see previous slide).

2 Test if the digit is a 0 and the symbol
to its left is # or □. If so: done.

3 Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement
reduces the number of digits.)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 18 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of P1; P2:

1 Recursively build DTMs M1 for P1 and M2 for P2.

2 Combine these to a DTM for P1; P2

by letting all transitions to end states of M1

instead go to the start state of M2.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 19 / 24

E2. GOTO Computability & Comparsion to Turing Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of WHILE xi ̸= 0 DO P END:

1 Recursively build DTM M for P.

2 Build a DTM M ′ for WHILE xi ̸= 0 DO P END
that works as follows:

1 Move to the last digit of xi .
2 Test if that symbol is 0 and the symbol to its left is # or □.

If so: done.
3 Otherwise execute M, where all transitions to end states of M

are replaced by transitions to the start state of M ′.

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 20 / 24



E2. GOTO Computability & Comparsion to Turing Computability Turing vs. GOTO

E2.4 Turing vs. GOTO

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 21 / 24

E2. GOTO Computability & Comparsion to Turing Computability Turing vs. GOTO

Turing-Computability vs. GOTO-Computability

Theorem (Turing-Computability vs. GOTO-Computability)

Every Turing-computable numerical function is GOTO-computable.

Proof sketch.
▶ Represent TM configuration (x , q, y) with three numbers, one

for x , one for q and one for y .

▶ The tape content can be accessed and modified using DIV
and MOD operations, which are GOTO-computable.

▶ For each transition, implement the corresponding modification
of the configuration in terms of the three numbers.

▶ Use “IF . . . GOTO” statements for each tape symbol and
state to jump to the implementation of the corresponding
transition.

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 22 / 24

E2. GOTO Computability & Comparsion to Turing Computability Turing vs. GOTO

Final Result

Corollary

Let f : Nk
0 →p N0 be a function.

The following statements are equivalent:

▶ f is Turing-computable.

▶ f is WHILE-computable.

▶ f is GOTO-computable.

Moreover:

▶ Every LOOP-computable function
is Turing-/WHILE-/GOTO-computable.

▶ The converse is not true in general.

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 23 / 24

E2. GOTO Computability & Comparsion to Turing Computability Summary

Summary

results of the investigation:

▶ another new model of computation: GOTO programs

▶ Turing machines, WHILE and GOTO programs
are equally powerful.
▶ Whenever we said “Turing-computable” or “computable” in

parts C or D, we could equally have said “WHILE-computable”
or “GOTO-computable”.

▶ LOOP programs are strictly less powerful.

Gabriele Röger (University of Basel) Theory of Computer Science May 24, 2023 24 / 24


	GOTO Programs
	

	GOTO vs. WHILE
	

	WHILE vs. Turing
	

	Turing vs. GOTO
	

	Summary

