

Theory of Computer Science

E2. GOTO Computability & Comparsion to Turing Computability

Gabriele Röger

University of Basel

May 24, 2023

Theory of Computer Science

May 24, 2023 — E2. GOTO Computability & Comparison to Turing Computability

E2.1 GOTO Programs

E2.2 GOTO vs. WHILE

E2.3 WHILE vs. Turing

E2.4 Turing vs. GOTO

E2.1 GOTO Programs

Motivation

We already know: WHILE programs are strictly more powerful than LOOP programs.

How do DTMs relate to LOOP and WHILE programs?

To answer this question, we make a detour over one more programming formalism, **GOTO** programs.

We will establish:

- ▶ WHILE programs are at least as powerful as GOTO programs.
- ▶ DTMs are at least as powerful as WHILE programs.
- ▶ GOTO programs are at least as powerful as DTMs.

⇒ Turing-computable = WHILE-computable = GOTO-computable

GOTO Programs: Syntax

Definition (GOTO Program)

A **GOTO program** is given by a finite sequence $L_1 : A_1, L_2 : A_2, \dots, L_n : A_n$ of **labels** and **statements**.

Statements are of the following form:

- ▶ $x_i := x_j + c$ for every $i, j, c \in \mathbb{N}_0$ (addition)
- ▶ $x_i := x_j - c$ for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- ▶ HALT (end of program)
- ▶ GOTO L_j for $1 \leq j \leq n$ (jump)
- ▶ IF $x_i = c$ THEN GOTO L_j for $i, c \in \mathbb{N}_0$,
 $1 \leq j \leq n$ (conditional jump)

GOTO Programs: Semantics

Definition (Semantics of GOTO Programs)

- ▶ Input, output and variables work exactly as in LOOP and WHILE programs.
- ▶ Addition and modified subtraction work exactly as in LOOP and WHILE programs.
- ▶ Execution begins with the statement A_1 .
- ▶ After executing A_i , the statement A_{i+1} is executed.
(If $i = n$, execution finishes.)
- ▶ exceptions to the previous rule:
 - ▶ **HALT** stops the execution of the program.
 - ▶ After **GOTO L_j** execution continues with statement A_j .
 - ▶ After **IF $x_i = c$ THEN GOTO L_j** execution continues with A_j if variable x_i currently holds the value c .

GOTO-Computable Functions

Definition (GOTO-Computable)

A function $f : \mathbb{N}_0^k \rightarrow \mathbb{N}_0$ is called **GOTO-computable** if a GOTO program that computes f exists.

E2.2 GOTO vs. WHILE

GOTO-Computability vs. WHILE-Computability

Theorem

Every GOTO-computable function is WHILE-computable.

If we allow IF statements, a single WHILE loop is sufficient for this.

(We will discuss the converse statement later.)

GOTO-Computability vs. WHILE-Computability

Proof sketch.

Given any GOTO program, we construct an equivalent WHILE program with a single WHILE loop (and IF statements).

Ideas:

- ▶ Use a fresh variable to store the number of the statement to be executed next.
 - ~~> The variable of course has the form x_i , but for readability we write it as pc for “program counter”.
- ▶ GOTO is simulated as an assignment to pc .
- ▶ If pc has the value 0, the program terminates.

...

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Let $L_1 : A_1, L_2 : A_2, \dots, L_n : A_n$ be the given GOTO program.

basic structure of the WHILE program:

$pc := 1;$

WHILE $pc \neq 0$ DO

 IF $pc = 1$ THEN (translation of A_1) END;

 ...

 IF $pc = n$ THEN (translation of A_n) END;

 IF $pc = n + 1$ THEN $pc := 0$ END

END

...

GOTO-Computability vs. WHILE-Computability

Proof sketch (continued).

Translation of the individual statements:

- ▶ $x_i := x_j + c$
 $\rightsquigarrow x_i := x_j + c; pc := pc + 1$
- ▶ $x_i := x_j - c$
 $\rightsquigarrow x_i := x_j - c; pc := pc + 1$
- ▶ HALT
 $\rightsquigarrow pc := 0$
- ▶ GOTO L_j
 $\rightsquigarrow pc := j$
- ▶ IF $x_i = c$ THEN GOTO L_j
 $\rightsquigarrow pc := pc + 1; \text{IF } x_i = c \text{ THEN } pc := j \text{ END}$

E2.3 WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Theorem

Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)

WHILE-Computability vs. Turing-Computability

Proof sketch.

Given any WHILE program, we construct an equivalent deterministic Turing machine.

Let x_1, \dots, x_k be the input variables of the WHILE program, and let x_0, \dots, x_m be all used variables.

General ideas:

- ▶ The DTM simulates the individual execution steps of the WHILE program.
- ▶ Before and after each WHILE program step the tape contains the word $bin(n_0)\#bin(n_1)\#\dots\#bin(n_m)$, where n_i is the value of WHILE program variable x_i .
- ▶ It is enough to simulate “minimalistic” WHILE programs ($x_i := x_i + 1$, $x_i := x_i - 1$, composition, WHILE loop).

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:

- ▶ **initialization:**
 - ▶ Write 0# in front of the used part of the tape (move existing content 2 positions to the right).
 - ▶ $(m - k)$ times, write #0 behind the used part of the tape.
- ▶ **execution:**

Simulate the WHILE program (see next slide).
- ▶ **clean-up:**
 - ▶ Replace all symbols starting from the first # with \square , then move to the first tape cell.

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i + 1$:

- ① Move to the first tape cell.
- ② $(i + 1)$ times: move right until $\#$ or \square is reached.
- ③ Move one step to the left.

↝ We are now on the last digit of the encoding of x_i .

- ④ Execute DTM for increment by 1. (Most difficult part: “make room” if the number of binary digits increases.)

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i - 1$:

- ① Move to the last digit of x_i (see previous slide).
- ② Test if the digit is a 0 and the symbol to its left is $\#$ or \square . If so: done.
- ③ Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement reduces the number of digits.)

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of P_1 ; P_2 :

- ① Recursively build DTM $s M_1$ for P_1 and M_2 for P_2 .
- ② Combine these to a DTM for $P_1; P_2$
by letting all transitions to end states of M_1
instead go to the start state of M_2 .

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of WHILE $x_i \neq 0$ DO P END:

- ① Recursively build DTM M for P .
- ② Build a DTM M' for WHILE $x_i \neq 0$ DO P END that works as follows:
 - ① Move to the last digit of x_i .
 - ② Test if that symbol is 0 and the symbol to its left is # or \square .
If so: done.
 - ③ Otherwise execute M , where all transitions to end states of M are replaced by transitions to the start state of M' .

E2.4 Turing vs. GOTO

Turing-Computability vs. GOTO-Computability

Theorem (Turing-Computability vs. GOTO-Computability)

Every Turing-computable numerical function is GOTO-computable.

Proof sketch.

- ▶ Represent TM configuration (x, q, y) with three numbers, one for x , one for q and one for y .
- ▶ The tape content can be accessed and modified using DIV and MOD operations, which are GOTO-computable.
- ▶ For each transition, implement the corresponding modification of the configuration in terms of the three numbers.
- ▶ Use “IF … GOTO” statements for each tape symbol and state to jump to the implementation of the corresponding transition.

Final Result

Corollary

Let $f : \mathbb{N}_0^k \rightarrow_p \mathbb{N}_0$ be a function.

The following statements are equivalent:

- ▶ *f is Turing-computable.*
- ▶ *f is WHILE-computable.*
- ▶ *f is GOTO-computable.*

Moreover:

- ▶ *Every LOOP-computable function is Turing-/WHILE-/GOTO-computable.*
- ▶ *The converse is not true in general.*

Summary

results of the investigation:

- ▶ another new model of computation: **GOTO programs**
- ▶ Turing machines, WHILE and GOTO programs are **equally powerful**.
 - ▶ Whenever we said “Turing-computable” or “computable” in parts C or D, we could equally have said “WHILE-computable” or “GOTO-computable”.
- ▶ LOOP programs are **strictly less powerful**.