Theory of Computer Science
E1. LOOP & WHILE Computability

Gabriele Roger
University of Basel

May 22, 2023



Introduction

Summar

Overview: Course

contents of this course:

A.

background v/
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?

Turing computability v

> What can be computed at all?
complexity theory v/

> What can be computed efficiently?

more computability theory
> Other models of computability



Introduction




Introduction

oeo

Formal Models of Computatlon LOOP/WHILE/GOTO

Formal Models of Computation

m Turing machines
m LOOP, WHILE and GOTO programs

m (primitive recursive and p-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

m LOOP programs ~~ today

m WHILE programs ~~ today
m GOTO programs ~» F2

m Comparison to DTMs ~ F2



Introduction og W “HILE H grams W \ OOP \mmvmw

ooe

LOOP, WHILE and GOTO Programs Basic Concepts

m LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

m use finitely many variables from the set {xp, x1, x2, ... }
that can take on values in Ny

m differ from each other in the allowed “statements”



LOOP Programs
0000000

LOOP Programs



Introduction LOOP Programs

0O@000000

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

m x; = x; + c isa LOOP program
for every i, j, c € Ng (addition)
m x; = xj — cisa LOOP program
for every i, j, c € Ny (modified subtraction)
m If P; and P, are LOOP programs,
then so is Py; P, (composition)
m If Pis a LOOP program, then so is
LOOP x; DO P END for every i € Ng (LOOP loop)




Introduction LOOP Programs W
00®00000 00

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : N§ — No. The computation of f(ny, ..., ng) works as follows:
© Initially, the variables xg, ..., xx hold the values ny, ..., ng.
All other variables hold the value 0.
@ During computation, the program modifies the variables
as described on the following slides.

© The result of the computation (f(ny,...,nk)) is
the value of xp after the execution of the program.




Introduction LOOP Programs V W OOP Summar

[e]e] lele]elele)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of x; := x; + c:
m The variable x; is assigned the current value of x; plus c.
m All other variables retain their value.




Introduction LOOP Programs

[e]e] lele]elele)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of x; := x; — c:

m The variable x; is assigned the current value of x; minus ¢
if this value is non-negative.

m Otherwise x; is assigned the value 0.

m All other variables retain their value.




Introduction LOOP Programs WHILE Programs W OOP Summar

[e]e] lele]elele)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of P1; Po:

m First, execute P;.
Then, execute P, (on the modified variable values).




Introduction LOOP Programs WHILE Programs W OOP Summar

[e]e] lele]elele)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of LOOP x; DO P END:
m Let m be the value of variable x; at the start of execution.

m The program P is executed m times in sequence.




LOOP Programs
[e]e]e] lelele]e]

LOOP-Computable Functions

Definition (LOOP-Computable)

A function £ : N’a —p Np is called LOOP-computable
if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable.
(Why not?)



Introduction LOOP Programs
000 00008000

LOOP Programs: Example

Example (LOOP program for f(x1,x2))

LOOP x; DO
LOOP x» DO
X0 :=Xxp+1
END
END

Which (binary) function does this program compute?



Introduction LOOP Programs

[e]e]e]e]e] lele)

Syntactic Sugar or Essential Feature?

m We investigate the power of programming languages
and other computation formalisms.

m Rich language features help when writing complex programs.

m Minimalistic formalisms are useful for proving statements
over all programs.

~~ conflict of interest!
Idea:

m Use minimalistic core for proofs.

m Use syntactic sugar when writing programs.



[e]e]e]ele]e] o)

Introduction LOOP Programs WHILE Programs N OP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):
m x; ;= x; for i,j € Ny
m x; = cfori,c €Ny
m X :=Xxj+x, fori,j,k €Ny
m IF x; #0 THEN P END for i € Ny
m IF x; = c THEN P END for i,c € Ny

Can we simulate these with the existing constructs?




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Ng

Simulation with existing constructs?




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Ng

Simple abbreviation for x; := x; + 0.




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)

x; = c for i,c € Ny

Simulation with existing constructs?




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)

x; = c for i,c € Ny

Simple abbreviation for x; := x; + c,

where x; is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.

(Thus x; must always have the value 0 in all executions.)




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)

Xi = xj + xi for i,j, k € Ng

Simulation with existing constructs?




Introduction LOOP Programs W Programs W OOP Summary
00000080 0 o) 00 00 00

Example: Syntactic Sugar

Example (syntactic sugar)

Xi = xj + xi for i,j, k € Ng
Abbreviation for:
X 1= Xj;
LOOP x, DO
xi=x;+1
END
Analogously we will also use the following:
X = XJ — Xk
X =X +X—C—Xm+d

m etc.




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Simulation with existing constructs?




Introduction LOOP Programs WHILE Programs
00000080 000000

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Abbreviation for:
xj :=0;
LOOP x; DO

xj =1
END:
LOOP x; DO
p
END

where X; is a fresh variable.




Introduction LOOP Programs
00000080

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = ¢ THEN P END for i, c € Ny

Simulation with existing constructs?




Introduction LOOP Programs WHILE Programs
00000080 000000

Summary

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = c THEN P END for i,c € Ny

Abbreviation for:
xj =1,
X = Xj — C;
IF xx # 0 THEN x; := 0 END;
Xk -— C — Xj,
IF x, # 0 THEN x; := 0 END;
IF x; # 0 THEN
P
END

where x; and x; are fresh variables.




LOOP Programs
O000000e

Questions

o

~

Questions?



WHILE Programs
000000

WHILE Programs



Introduction WHILE Programs
000 0@0000

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

® Xx; := xj + c is a WHILE program
for every i,j, c € Ny (addition)
m x; = x; — c is a WHILE program
for every i, j, c € Ny (modified subtraction)
m If P; and P, are WHILE programs,
then so is Py; P, (composition)
m If P is a WHILE program, then so is
WHILE x; #£ 0 DO P END for every i € Ny (WHILE loop)




Introduction 4 ams WHILE Programs
000 00000000 008000

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)
The semantics of WHILE programs is defined
exactly as for LOOP programs.
effect of WHILE x; ## 0 DO P END:
m If x; holds the value 0, program execution finishes.

m Otherwise execute P.

m Repeat these steps until execution finishes
(potentially infinitely often).




WHILE Programs
[e]e]e] lele)

WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : N’a —p Np is called WHILE-computable
if a WHILE program that computes f exists.




Introduction OOP ams WHILE Programs W OOP Summar

[e]e]e]e] Te]

WHILE-Program: Example

WHILE x, # 0 DO
X1 = X1 — X2,
X0 :=xg+1
END

What function f(x1, x2) does this program compute?



WHILE Programs
[e]e]e]e]e] )

Questions

o

~

Questions?



WHILE vs. LOOP



WHILE vs. LOOP
0®0000000000

WHILE-Computability vs. LOOP-Computability

Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.



Introduction LOOP Programs VHILE Programs WHILE vs. LOOP

00@000000000

WHILE- Computablllty vs. LOOP-Computability

Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i.e., one computing the same function.

To do so, replace each occurrence of LOOP x; DO P END with

5§ = 5%
WHILE x; # 0 DO
xj = x;— 1,

P
END

where X; is a fresh variable.




Introduction

WHILE Programs WHILE vs. LOOP Summary
000000 000800000000 00

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program
x1 = 1;
WHILE x; # 0 DO
x1:=1
END
computes the function € : Ng —, Ny that is undefined everywhere.

Q is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total). O]

V.




Introduction

WHILE vs. LOOP
000080000000

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

m x; = x; for i,j € Ny
mx;=cfori,c €Ny

B ;= x;+x fori,j,k € Ng

m IF x; 20 THEN P END for i € Ny
m IF x; =c THEN P END for i,c € Ny



WHILE vs. LOOP
000008000000

Questions

o

~

Questions?



Introduction

E Programs WHILE vs. LOOP
00 000000800000

LOOP vs. WHILE: Is There a Practical Difference?

m We have shown that WHILE programs
are strictly more powerful than LOOP programs.

m The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

m To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

m Are there any total functions that are WHILE-computable,
but not LOOP-computable?



Introduction _OOP Programs WHILE Programs WHILE vs. LOOP Summar

0000000e0000

Ackermann Function: History

m David Hilbert (1926) conjectured that all computable
total functions are primitive recursive (= LOOP-computable).

m Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

m The counterexample was simplified by Rézsa Péter (1935).

~ here: simplified version



Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summar

000000008000

Ackermann Function

Definition (Ackermann function)

The Ackermann function a: N2 — Ny is defined as follows:

a0,y)=y+1 for all y > 0
a(x,0) = a(x — 1,1) for all x > 0
a(x,y) =a(x—1,a(x,y — 1)) for all x,y >0

Note: the recursion in the definition is bounded,
so this defines a total function.



WHILE vs. LOOP
000000000800

Table of Values




WHILE vs. LOOP
000000000080

Computability of the Ackermann Function

The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)



WHILE vs. LOOP
000000000008

Questions

o

~

Questions?



Summarn
0

Summary



Introduction 00 s V O0P Summary
000 © © )¢ o

Summary

m new models of computation for numerical functions:
LOOP and WHILE programs

m closer to typical programming languages than Turing machines

m WHILE programs strictly more powerful than LOOP programs.
m WHILE-, but not LOOP-computable functions:

m simple example: function that is undefined everywhere
m more interesting example (total function):

Ackermann function, which grows too fast

to be LOOP-computable



	Introduction
	

	LOOP Programs
	

	WHILE Programs
	

	WHILE vs. LOOP
	

	Summary
	


