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Overview: Course

contents of this course:

A.

background v/
> mathematical foundations and proof techniques

. automata theory and formal languages v/

> What is a computation?

Turing computability v

> What can be computed at all?
complexity theory v/

> What can be computed efficiently?

more computability theory
> Other models of computability
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Formal Models of Computatlon LOOP/WHILE/GOTO

Formal Models of Computation

m Turing machines
m LOOP, WHILE and GOTO programs

m (primitive recursive and p-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

m LOOP programs ~~ today

m WHILE programs ~~ today
m GOTO programs ~» F2

m Comparison to DTMs ~ F2
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LOOP, WHILE and GOTO Programs Basic Concepts

m LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

m use finitely many variables from the set {xp, x1, x2, ... }
that can take on values in Ny

m differ from each other in the allowed “statements”
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LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

m x; = x; + c isa LOOP program
for every i, j, c € Ng (addition)
m x; = xj — cisa LOOP program
for every i, j, c € Ny (modified subtraction)
m If P; and P, are LOOP programs,
then so is Py; P, (composition)
m If Pis a LOOP program, then so is
LOOP x; DO P END for every i € Ng (LOOP loop)
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LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : N§ — No. The computation of f(ny, ..., ng) works as follows:
© Initially, the variables xg, ..., xx hold the values ny, ..., ng.
All other variables hold the value 0.
@ During computation, the program modifies the variables
as described on the following slides.

© The result of the computation (f(ny,...,nk)) is
the value of xp after the execution of the program.
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LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of x; := x; + c:
m The variable x; is assigned the current value of x; plus c.
m All other variables retain their value.
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LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of x; := x; — c:

m The variable x; is assigned the current value of x; minus ¢
if this value is non-negative.

m Otherwise x; is assigned the value 0.

m All other variables retain their value.
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LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of P1; Po:

m First, execute P;.
Then, execute P, (on the modified variable values).




Introduction LOOP Programs WHILE Programs W OOP Summar

[e]e] lele]elele)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of LOOP x; DO P END:
m Let m be the value of variable x; at the start of execution.

m The program P is executed m times in sequence.
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LOOP-Computable Functions

Definition (LOOP-Computable)

A function £ : N’a —p Np is called LOOP-computable
if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable.
(Why not?)
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LOOP Programs: Example

Example (LOOP program for f(x1,x2))

LOOP x; DO
LOOP x» DO
X0 :=Xxp+1
END
END

Which (binary) function does this program compute?
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Syntactic Sugar or Essential Feature?

m We investigate the power of programming languages
and other computation formalisms.

m Rich language features help when writing complex programs.

m Minimalistic formalisms are useful for proving statements
over all programs.

~~ conflict of interest!
Idea:

m Use minimalistic core for proofs.

m Use syntactic sugar when writing programs.
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Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):
m x; ;= x; for i,j € Ny
m x; = cfori,c €Ny
m X :=Xxj+x, fori,j,k €Ny
m IF x; #0 THEN P END for i € Ny
m IF x; = c THEN P END for i,c € Ny

Can we simulate these with the existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Ng

Simulation with existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Ng

Simple abbreviation for x; := x; + 0.
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Example: Syntactic Sugar

Example (syntactic sugar)

x; = c for i,c € Ny

Simulation with existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)

x; = c for i,c € Ny

Simple abbreviation for x; := x; + c,

where x; is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.

(Thus x; must always have the value 0 in all executions.)
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Example: Syntactic Sugar

Example (syntactic sugar)

Xi = xj + xi for i,j, k € Ng

Simulation with existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)

Xi = xj + xi for i,j, k € Ng
Abbreviation for:
X 1= Xj;
LOOP x, DO
xi=x;+1
END
Analogously we will also use the following:
X = XJ — Xk
X =X +X—C—Xm+d

m etc.
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Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Simulation with existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Abbreviation for:
xj :=0;
LOOP x; DO

xj =1
END:
LOOP x; DO
p
END

where X; is a fresh variable.
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Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = ¢ THEN P END for i, c € Ny

Simulation with existing constructs?
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Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = c THEN P END for i,c € Ny

Abbreviation for:
xj =1,
X = Xj — C;
IF xx # 0 THEN x; := 0 END;
Xk -— C — Xj,
IF x, # 0 THEN x; := 0 END;
IF x; # 0 THEN
P
END

where x; and x; are fresh variables.
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WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

® Xx; := xj + c is a WHILE program
for every i,j, c € Ny (addition)
m x; = x; — c is a WHILE program
for every i, j, c € Ny (modified subtraction)
m If P; and P, are WHILE programs,
then so is Py; P, (composition)
m If P is a WHILE program, then so is
WHILE x; #£ 0 DO P END for every i € Ny (WHILE loop)
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WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)
The semantics of WHILE programs is defined
exactly as for LOOP programs.
effect of WHILE x; ## 0 DO P END:
m If x; holds the value 0, program execution finishes.

m Otherwise execute P.

m Repeat these steps until execution finishes
(potentially infinitely often).
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WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : N’a —p Np is called WHILE-computable
if a WHILE program that computes f exists.
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WHILE-Program: Example

WHILE x, # 0 DO
X1 = X1 — X2,
X0 :=xg+1
END

What function f(x1, x2) does this program compute?
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WHILE-Computability vs. LOOP-Computability

Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.
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WHILE- Computablllty vs. LOOP-Computability

Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i.e., one computing the same function.

To do so, replace each occurrence of LOOP x; DO P END with

5§ = 5%
WHILE x; # 0 DO
xj = x;— 1,

P
END

where X; is a fresh variable.
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WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program
x1 = 1;
WHILE x; # 0 DO
x1:=1
END
computes the function € : Ng —, Ny that is undefined everywhere.

Q is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total). O]

V.
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Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

m x; = x; for i,j € Ny
mx;=cfori,c €Ny

B ;= x;+x fori,j,k € Ng

m IF x; 20 THEN P END for i € Ny
m IF x; =c THEN P END for i,c € Ny
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LOOP vs. WHILE: Is There a Practical Difference?

m We have shown that WHILE programs
are strictly more powerful than LOOP programs.

m The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

m To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

m Are there any total functions that are WHILE-computable,
but not LOOP-computable?
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Ackermann Function: History

m David Hilbert (1926) conjectured that all computable
total functions are primitive recursive (= LOOP-computable).

m Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

m The counterexample was simplified by Rézsa Péter (1935).

~ here: simplified version
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Ackermann Function

Definition (Ackermann function)

The Ackermann function a: N2 — Ny is defined as follows:

a0,y)=y+1 for all y > 0
a(x,0) = a(x — 1,1) for all x > 0
a(x,y) =a(x—1,a(x,y — 1)) for all x,y >0

Note: the recursion in the definition is bounded,
so this defines a total function.



WHILE vs. LOOP
000000000800

Table of Values
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Computability of the Ackermann Function

The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)
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Summary

m new models of computation for numerical functions:
LOOP and WHILE programs

m closer to typical programming languages than Turing machines

m WHILE programs strictly more powerful than LOOP programs.
m WHILE-, but not LOOP-computable functions:

m simple example: function that is undefined everywhere
m more interesting example (total function):

Ackermann function, which grows too fast

to be LOOP-computable
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