Theory of Computer Science E1. LOOP & WHILE Computability

Gabriele Röger

University of Basel

May 22, 2023

Overview: Course

contents of this course:

- A. background ✓ > mathematical foundations and proof techniques
- B. automata theory and formal languages ✓ ▶ What is a computation?
- C. Turing computability ✓ ▶ What can be computed at all?
- D. complexity theory ✓ ▶ What can be computed efficiently?
- E. more computability theory Other models of computability

Introduction •00

Formal Models of Computation

Turing machines

Introduction

- LOOP, WHILE and GOTO programs
- (primitive recursive and μ -recursive functions)

In this and the following chapter we get to know three simple models of computation (programming languages) and compare their power to Turing machines:

- LOOP programs ~> today
- WHILE programs ~> today
- GOTO programs \leadsto F2
- Comparison to DTMs ~→ F2

Introduction

- LOOP, WHILE and GOTO programs are structured like programs in (simple) "traditional" programming languages
- use finitely many variables from the set $\{x_0, x_1, x_2, \dots\}$ that can take on values in \mathbb{N}_0
- differ from each other in the allowed "statements"

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

- $\mathbf{x}_i := x_i + c$ is a LOOP program for every $i, j, c \in \mathbb{N}_0$ (addition)
- $\mathbf{x}_i := x_i c$ is a LOOP program for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- If P_1 and P_2 are LOOP programs, then so is $P_1; P_2$ (composition)
- If P is a LOOP program, then so is LOOP x_i DO P END for every $i \in \mathbb{N}_0$ (LOOP loop)

Definition (Semantics of LOOP <u>Programs</u>)

A LOOP program computes a k-ary function

 $f: \mathbb{N}_0^k \to \mathbb{N}_0$. The computation of $f(n_1, \ldots, n_k)$ works as follows:

- Initially, the variables x_1, \ldots, x_k hold the values n_1, \ldots, n_k . All other variables hold the value 0.
- Ouring computation, the program modifies the variables as described on the following slides.
- **3** The result of the computation $(f(n_1, ..., n_k))$ is the value of x_0 after the execution of the program.

Definition (Semantics of LOOP Programs)

effect of $x_i := x_i + c$:

- The variable x_i is assigned the current value of x_i plus c.
- All other variables retain their value.

Definition (Semantics of LOOP Programs)

effect of $x_i := x_i - c$:

- The variable x_i is assigned the current value of x_i minus cif this value is non-negative.
- Otherwise x_i is assigned the value 0.
- All other variables retain their value.

Definition (Semantics of LOOP Programs)

effect of P_1 ; P_2 :

■ First, execute *P*₁. Then, execute P_2 (on the modified variable values).

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

- Let m be the value of variable x_i at the start of execution.
- The program *P* is executed *m* times in sequence.

LOOP-Computable Functions

Definition (LOOP-Computable)

A function $f: \mathbb{N}_0^k \to_{p} \mathbb{N}_0$ is called LOOP-computable if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable. (Why not?)

LOOP Programs: Example

```
Example (LOOP program for f(x_1, x_2))
LOOP x<sub>1</sub> DO
  LOOP x2 DO
    x_0 := x_0 + 1
  END
END
```

Which (binary) function does this program compute?

Syntactic Sugar or Essential Feature?

- We investigate the power of programming languages and other computation formalisms.
- Rich language features help when writing complex programs.
- Minimalistic formalisms are useful for proving statements over all programs.
- → conflict of interest!

Idea:

- Use minimalistic core for proofs.
- Use syntactic sugar when writing programs.

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

- $\mathbf{x}_i := x_i \text{ for } i, j \in \mathbb{N}_0$
- $\mathbf{x}_i := \mathbf{c}$ for $i, c \in \mathbb{N}_0$
- $\mathbf{x}_i := x_i + x_k$ for $i, j, k \in \mathbb{N}_0$
- IF $x_i \neq 0$ THEN P END for $i \in \mathbb{N}_0$
- IF $x_i = c$ THEN P END for $i, c \in \mathbb{N}_0$

Can we simulate these with the existing constructs?

Example (syntactic sugar)

 $x_i := x_i$ for $i, j \in \mathbb{N}_0$

Simulation with existing constructs?

Example (syntactic sugar)

$$x_i := x_j \text{ for } i, j \in \mathbb{N}_0$$

Simple abbreviation for $x_i := x_i + 0$.

Example (syntactic sugar)

 $x_i := c$ for $i, c \in \mathbb{N}_0$

Simulation with existing constructs?

Example (syntactic sugar)

```
x_i := c for i, c \in \mathbb{N}_0
```

Simple abbreviation for $x_i := x_i + c$,

where x_i is a fresh variable, i.e., an otherwise unused variable that is not an input variable.

(Thus x_i must always have the value 0 in all executions.)

Example (syntactic sugar)

$$x_i := x_j + x_k$$
 for $i, j, k \in \mathbb{N}_0$

Simulation with existing constructs?

Example (syntactic sugar)

$$x_i := x_j + x_k$$
 for $i, j, k \in \mathbb{N}_0$

Abbreviation for:

$$x_i := x_j;$$

LOOP x_k DO

$$x_i := x_i + 1$$

Analogously we will also use the following:

- $\mathbf{x}_i := x_i x_k$
- $x_i := x_i + x_k c x_m + d$
- etc.

Example (syntactic sugar)

IF $x_i \neq 0$ THEN P END for $i \in \mathbb{N}_0$

Simulation with existing constructs?

Example (syntactic sugar)

```
IF x_i \neq 0 THEN P END for i \in \mathbb{N}_0
```

Abbreviation for:

```
x_j := 0;

LOOP x_i DO

x_j := 1

END;

LOOP x_j DO
```

END

where x_i is a fresh variable.

Example (syntactic sugar)

IF $x_i = c$ THEN P END for $i, c \in \mathbb{N}_0$

Simulation with existing constructs?

Example (syntactic sugar)

```
IF x_i = c THEN P END for i, c \in \mathbb{N}_0
```

Abbreviation for:

```
x_i := 1;
x_k := x_i - c;
IF x_k \neq 0 THEN x_i := 0 END;
x_k := c - x_i:
IF x_k \neq 0 THEN x_i := 0 END;
IF x_i \neq 0 THEN
END
```

where x_i and x_k are fresh variables.

Questions?

WHILE Programs

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

- $\mathbf{x}_i := x_i + c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (addition)
- $\mathbf{x}_i := x_i c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- If P_1 and P_2 are WHILE programs, then so is $P_1; P_2$ (composition)
- If P is a WHILE program, then so is WHILE $x_i \neq 0$ DO P END for every $i \in \mathbb{N}_0$ (WHILE loop)

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined exactly as for LOOP programs.

effect of WHILE $x_i \neq 0$ DO P END:

- If x_i holds the value 0, program execution finishes.
- Otherwise execute P.
- Repeat these steps until execution finishes (potentially infinitely often).

WHILE-Computable Functions

Definition (WHILE-Computable)

A function $f: \mathbb{N}_0^k \to_{\mathbb{P}} \mathbb{N}_0$ is called WHILE-computable if a WHILE program that computes f exists.

Example

WHILE $x_1 \neq 0$ DO

$$x_1 := x_1 - x_2;$$

$$x_0 := x_0 + 1$$

END

What function $f(x_1, x_2)$ does this program compute?

Questions

Questions?

WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Theorem

Every LOOP-computable function is WHILE-computable. The converse is not true.

WHILE programs are therefore strictly more powerful than LOOP programs.

WHILE-Computability vs. LOOP-Computability

Proof.

Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent WHILE program, i. e., one computing the same function.

To do so, replace each occurrence of LOOP x_i DO P END with

```
x_j := x_i;
WHILE x_j \neq 0 DO
x_j := x_j - 1;
P
FND
```

where x_i is a fresh variable.

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are LOOP-computable.

```
The WHILE program
```

```
x_1 := 1:
WHILE x_1 \neq 0 DO
  x_1 := 1
END
```

computes the function $\Omega: \mathbb{N}_0 \to_{\mathbf{p}} \mathbb{N}_0$ that is undefined everywhere.

 Ω is hence WHILE-computable, but not LOOP-computable (because LOOP-computable functions are always total).

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with WHILE programs, we can use all syntactic sugar we have seen for LOOP programs in WHILE programs e.g.

- $\mathbf{x}_i := x_i \text{ for } i, j \in \mathbb{N}_0$
- $\mathbf{x}_i := \mathbf{c} \text{ for } i, \mathbf{c} \in \mathbb{N}_0$
- $\mathbf{x}_i := x_i + x_k \text{ for } i, j, k \in \mathbb{N}_0$
- IF $x_i \neq 0$ THEN P END for $i \in \mathbb{N}_0$
- IF $x_i = c$ THEN P END for $i, c \in \mathbb{N}_0$

Questions

Questions?

LOOP vs. WHILE: Is There a Practical Difference?

- We have shown that WHILE programs are strictly more powerful than LOOP programs.
- The example we used is not very relevant in practice because our argument only relied on the fact that LOOP-computable functions are always total.
- To terminate for every input is not much of a problem in practice. (Quite the opposite.)
- Are there any total functions that are WHILE-computable, but not LOOP-computable?

Ackermann Function: History

- David Hilbert (1926) conjectured that all computable total functions are primitive recursive (= LOOP-computable).
- Wilhelm Ackermann refuted the conjecture by supplying a counterexample (1928).
- The counterexample was simplified by Rózsa Péter (1935).
- → here: simplified version

Ackermann Function

Definition (Ackermann function)

The Ackermann function $a: \mathbb{N}_0^2 \to \mathbb{N}_0$ is defined as follows:

$$a(0,y) = y + 1$$
 for all $y \ge 0$
 $a(x,0) = a(x-1,1)$ for all $x > 0$
 $a(x,y) = a(x-1,a(x,y-1))$ for all $x,y > 0$

Note: the recursion in the definition is bounded, so this defines a total function.

Table of Values

	y = 0	y = 1	y = 2	y = 3	y = k
a(0,y)	1	2	3	4	k+1
a(1, y)	2	3	4	5	k+2
a(2, y)	3	5	7	9	2k + 3
a(3, y)	5	13	29	61	$2^{k+3}-3$
a(4, y)	13	65533	$2^{65536} - 3$	$2^{2^{65536}} - 3$	$\underbrace{2^{2^{\cdot^{\cdot^{\cdot^{2}}}}}}_{k+3} - 3$

Computability of the Ackermann Function

Theorem

The Ackermann function is WHILE-computable, but not LOOP-computable.

(Without proof.)

Questions

Questions?

Summary

Summary

- new models of computation for numerical functions: LOOP and WHILE programs
- closer to typical programming languages than Turing machines
- WHILE programs strictly more powerful than LOOP programs.
- WHILE-, but not LOOP-computable functions:
 - simple example: function that is undefined everywhere
 - more interesting example (total function): Ackermann function, which grows too fast to be LOOP-computable