
Theory of Computer Science
E1. LOOP & WHILE Computability

Gabriele Röger

University of Basel

May 22, 2023

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Overview: Course

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory ✓
▷ What can be computed efficiently?

E. more computability theory
▷ Other models of computability

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Introduction

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation

Turing machines

LOOP, WHILE and GOTO programs

(primitive recursive and µ-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

LOOP programs ⇝ today

WHILE programs ⇝ today

GOTO programs ⇝ F2

Comparison to DTMs ⇝ F2

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP, WHILE and GOTO Programs: Basic Concepts

LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

differ from each other in the allowed “statements”

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

xi := xj + c is a LOOP program
for every i , j , c ∈ N0 (addition)

xi := xj − c is a LOOP program
for every i , j , c ∈ N0 (modified subtraction)

If P1 and P2 are LOOP programs,
then so is P1;P2 (composition)

If P is a LOOP program, then so is
LOOP xi DO P END for every i ∈ N0 (LOOP loop)

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : Nk

0 → N0. The computation of f (n1, . . . , nk) works as follows:

1 Initially, the variables x1, . . . , xk hold the values n1, . . . , nk .
All other variables hold the value 0.

2 During computation, the program modifies the variables
as described on the following slides.

3 The result of the computation (f (n1, . . . , nk)) is
the value of x0 after the execution of the program.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj + c :

The variable xi is assigned the current value of xj plus c .

All other variables retain their value.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj − c :

The variable xi is assigned the current value of xj minus c
if this value is non-negative.

Otherwise xi is assigned the value 0.

All other variables retain their value.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of P1; P2:

First, execute P1.
Then, execute P2 (on the modified variable values).

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

Let m be the value of variable xi at the start of execution.

The program P is executed m times in sequence.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP-Computable Functions

Definition (LOOP-Computable)

A function f : Nk
0 →p N0 is called LOOP-computable

if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable.
Note: (Why not?)

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP Programs: Example

Example (LOOP program for f (x1, x2))

LOOP x1 DO
LOOP x2 DO
x0 := x0 + 1

END
END

Which (binary) function does this program compute?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Syntactic Sugar or Essential Feature?

We investigate the power of programming languages
and other computation formalisms.

Rich language features help when writing complex programs.

Minimalistic formalisms are useful for proving statements
over all programs.

⇝ conflict of interest!

Idea:

Use minimalistic core for proofs.

Use syntactic sugar when writing programs.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

xi := xj for i , j ∈ N0

xi := c for i , c ∈ N0

xi := xj + xk for i , j , k ∈ N0

IF xi ̸= 0 THEN P END for i ∈ N0

IF xi = c THEN P END for i , c ∈ N0

Can we simulate these with the existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simple abbreviation for xi := xj + 0.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simple abbreviation for xi := xj + c ,
where xj is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.
(Thus xj must always have the value 0 in all executions.)

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Abbreviation for:
xi := xj ;
LOOP xk DO
xi := xi + 1

END

Analogously we will also use the following:

xi := xj − xk

xi := xj + xk − c − xm + d

etc.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi ̸= 0 THEN P END for i ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi ̸= 0 THEN P END for i ∈ N0

Abbreviation for:
xj := 0;
LOOP xi DO

xj := 1
END;
LOOP xj DO
P

END

where xj is a fresh variable.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Abbreviation for:
xj := 1;
xk := xi − c ;
IF xk ̸= 0 THEN xj := 0 END;
xk := c − xi ;
IF xk ̸= 0 THEN xj := 0 END;
IF xj ̸= 0 THEN
P

END

where xj and xk are fresh variables.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Questions

Questions?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE Programs

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

xi := xj + c is a WHILE program
for every i , j , c ∈ N0 (addition)

xi := xj − c is a WHILE program
for every i , j , c ∈ N0 (modified subtraction)

If P1 and P2 are WHILE programs,
then so is P1;P2 (composition)

If P is a WHILE program, then so is
WHILE xi ̸= 0 DO P END for every i ∈ N0 (WHILE loop)

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined
exactly as for LOOP programs.

effect of WHILE xi ̸= 0 DO P END:

If xi holds the value 0, program execution finishes.

Otherwise execute P.

Repeat these steps until execution finishes
(potentially infinitely often).

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : Nk
0 →p N0 is called WHILE-computable

if a WHILE program that computes f exists.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE-Program: Example

Example

WHILE x1 ̸= 0 DO
x1 := x1 − x2;
x0 := x0 + 1

END

What function f (x1, x2) does this program compute?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Questions

Questions?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE vs. LOOP

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE-Computability vs. LOOP-Computability

Theorem

Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE-Computability vs. LOOP-Computability

Proof.

Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i. e., one computing the same function.

To do so, replace each occurrence of LOOP xi DO P END with
xj := xi ;
WHILE xj ̸= 0 DO
xj := xj − 1;
P

END

where xj is a fresh variable. . . .

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program
x1 := 1;
WHILE x1 ̸= 0 DO
x1 := 1

END

computes the function Ω : N0 →p N0 that is undefined everywhere.

Ω is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total).

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

xi := xj for i , j ∈ N0

xi := c for i , c ∈ N0

xi := xj + xk for i , j , k ∈ N0

IF xi ̸= 0 THEN P END for i ∈ N0

IF xi = c THEN P END for i , c ∈ N0

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Questions

Questions?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

LOOP vs. WHILE: Is There a Practical Difference?

We have shown that WHILE programs
are strictly more powerful than LOOP programs.

The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

Are there any total functions that are WHILE-computable,
but not LOOP-computable?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Ackermann Function: History

David Hilbert (1926) conjectured that all computable
total functions are primitive recursive (= LOOP-computable).

Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

The counterexample was simplified by Rózsa Péter (1935).

⇝ here: simplified version

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Ackermann Function

Definition (Ackermann function)

The Ackermann function a : N2
0 → N0 is defined as follows:

a(0, y) = y + 1 for all y ≥ 0

a(x , 0) = a(x − 1, 1) for all x > 0

a(x , y) = a(x − 1, a(x , y − 1)) for all x , y > 0

Note: the recursion in the definition is bounded,
Note: so this defines a total function.

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Table of Values

y = 0 y = 1 y = 2 y = 3 y = k

a(0, y) 1 2 3 4 k + 1

a(1, y) 2 3 4 5 k + 2

a(2, y) 3 5 7 9 2k + 3

a(3, y) 5 13 29 61 2k+3 − 3

a(4, y) 13 65533 265536−3 22
65536−3 22

···
2︸︷︷︸

k+3

−3

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Computability of the Ackermann Function

Theorem

The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Questions

Questions?

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Summary

Introduction LOOP Programs WHILE Programs WHILE vs. LOOP Summary

Summary

new models of computation for numerical functions:
LOOP and WHILE programs

closer to typical programming languages than Turing machines

WHILE programs strictly more powerful than LOOP programs.

WHILE-, but not LOOP-computable functions:

simple example: function that is undefined everywhere
more interesting example (total function):
Ackermann function, which grows too fast
to be LOOP-computable

	Introduction
	

	LOOP Programs
	

	WHILE Programs
	

	WHILE vs. LOOP
	

	Summary
	

