
Theory of Computer Science
E1. LOOP & WHILE Computability

Gabriele Röger

University of Basel

May 22, 2023

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 1 / 39

Theory of Computer Science
May 22, 2023 — E1. LOOP & WHILE Computability

E1.1 Introduction

E1.2 LOOP Programs

E1.3 WHILE Programs

E1.4 WHILE vs. LOOP

E1.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 2 / 39

Overview: Course

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability ✓
▷ What can be computed at all?

D. complexity theory ✓
▷ What can be computed efficiently?

E. more computability theory
▷ Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 3 / 39

E1. LOOP & WHILE Computability Introduction

E1.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 4 / 39

E1. LOOP & WHILE Computability Introduction

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation
▶ Turing machines

▶ LOOP, WHILE and GOTO programs

▶ (primitive recursive and µ-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

▶ LOOP programs ⇝ today

▶ WHILE programs ⇝ today

▶ GOTO programs ⇝ F2

▶ Comparison to DTMs ⇝ F2

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 5 / 39

E1. LOOP & WHILE Computability Introduction

LOOP, WHILE and GOTO Programs: Basic Concepts

▶ LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

▶ use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

▶ differ from each other in the allowed “statements”

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 6 / 39

E1. LOOP & WHILE Computability LOOP Programs

E1.2 LOOP Programs

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 7 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

▶ xi := xj + c is a LOOP program
for every i , j , c ∈ N0 (addition)

▶ xi := xj − c is a LOOP program
for every i , j , c ∈ N0 (modified subtraction)

▶ If P1 and P2 are LOOP programs,
then so is P1;P2 (composition)

▶ If P is a LOOP program, then so is
LOOP xi DO P END for every i ∈ N0 (LOOP loop)

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 8 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : Nk

0 → N0. The computation of f (n1, . . . , nk) works as follows:

1 Initially, the variables x1, . . . , xk hold the values n1, . . . , nk .
All other variables hold the value 0.

2 During computation, the program modifies the variables
as described on the following slides.

3 The result of the computation (f (n1, . . . , nk)) is
the value of x0 after the execution of the program.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 9 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj + c :

▶ The variable xi is assigned the current value of xj plus c .

▶ All other variables retain their value.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 10 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj − c :

▶ The variable xi is assigned the current value of xj minus c
if this value is non-negative.

▶ Otherwise xi is assigned the value 0.

▶ All other variables retain their value.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 11 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of P1; P2:

▶ First, execute P1.
Then, execute P2 (on the modified variable values).

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 12 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

▶ Let m be the value of variable xi at the start of execution.

▶ The program P is executed m times in sequence.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 13 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP-Computable Functions

Definition (LOOP-Computable)

A function f : Nk
0 →p N0 is called LOOP-computable

if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable.
Note: (Why not?)

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 14 / 39

E1. LOOP & WHILE Computability LOOP Programs

LOOP Programs: Example

Example (LOOP program for f (x1, x2))

LOOP x1 DO
LOOP x2 DO
x0 := x0 + 1

END
END

Which (binary) function does this program compute?

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 15 / 39

E1. LOOP & WHILE Computability LOOP Programs

Syntactic Sugar or Essential Feature?

▶ We investigate the power of programming languages
and other computation formalisms.

▶ Rich language features help when writing complex programs.

▶ Minimalistic formalisms are useful for proving statements
over all programs.

⇝ conflict of interest!

Idea:

▶ Use minimalistic core for proofs.

▶ Use syntactic sugar when writing programs.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 16 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

▶ xi := xj for i , j ∈ N0

▶ xi := c for i , c ∈ N0

▶ xi := xj + xk for i , j , k ∈ N0

▶ IF xi ̸= 0 THEN P END for i ∈ N0

▶ IF xi = c THEN P END for i , c ∈ N0

Can we simulate these with the existing constructs?

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 17 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simple abbreviation for xi := xj + 0.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 18 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simple abbreviation for xi := xj + c ,
where xj is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.
(Thus xj must always have the value 0 in all executions.)

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 19 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Abbreviation for:
xi := xj ;
LOOP xk DO
xi := xi + 1

END

Analogously we will also use the following:

▶ xi := xj − xk
▶ xi := xj + xk − c − xm + d

▶ etc.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 20 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi ̸= 0 THEN P END for i ∈ N0

Abbreviation for:
xj := 0;
LOOP xi DO
xj := 1

END;
LOOP xj DO

P
END

where xj is a fresh variable.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 21 / 39

E1. LOOP & WHILE Computability LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Abbreviation for:
xj := 1;
xk := xi − c ;
IF xk ̸= 0 THEN xj := 0 END;
xk := c − xi ;
IF xk ̸= 0 THEN xj := 0 END;
IF xj ̸= 0 THEN
P

END

where xj and xk are fresh variables.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 22 / 39

E1. LOOP & WHILE Computability WHILE Programs

E1.3 WHILE Programs

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 23 / 39

E1. LOOP & WHILE Computability WHILE Programs

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

▶ xi := xj + c is a WHILE program
for every i , j , c ∈ N0 (addition)

▶ xi := xj − c is a WHILE program
for every i , j , c ∈ N0 (modified subtraction)

▶ If P1 and P2 are WHILE programs,
then so is P1;P2 (composition)

▶ If P is a WHILE program, then so is
WHILE xi ̸= 0 DO P END for every i ∈ N0 (WHILE loop)

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 24 / 39

E1. LOOP & WHILE Computability WHILE Programs

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined
exactly as for LOOP programs.

effect of WHILE xi ̸= 0 DO P END:

▶ If xi holds the value 0, program execution finishes.

▶ Otherwise execute P.

▶ Repeat these steps until execution finishes
(potentially infinitely often).

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 25 / 39

E1. LOOP & WHILE Computability WHILE Programs

WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : Nk
0 →p N0 is called WHILE-computable

if a WHILE program that computes f exists.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 26 / 39

E1. LOOP & WHILE Computability WHILE Programs

WHILE-Program: Example

Example

WHILE x1 ̸= 0 DO
x1 := x1 − x2;
x0 := x0 + 1

END

What function f (x1, x2) does this program compute?

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 27 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

E1.4 WHILE vs. LOOP

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 28 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Theorem
Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 29 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Proof.
Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i. e., one computing the same function.

To do so, replace each occurrence of LOOP xi DO P END with
xj := xi ;
WHILE xj ̸= 0 DO
xj := xj − 1;
P

END

where xj is a fresh variable. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 30 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program
x1 := 1;
WHILE x1 ̸= 0 DO
x1 := 1

END

computes the function Ω : N0 →p N0 that is undefined everywhere.

Ω is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total).

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 31 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

▶ xi := xj for i , j ∈ N0

▶ xi := c for i , c ∈ N0

▶ xi := xj + xk for i , j , k ∈ N0

▶ IF xi ̸= 0 THEN P END for i ∈ N0

▶ IF xi = c THEN P END for i , c ∈ N0

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 32 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

LOOP vs. WHILE: Is There a Practical Difference?

▶ We have shown that WHILE programs
are strictly more powerful than LOOP programs.

▶ The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

▶ To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

▶ Are there any total functions that are WHILE-computable,
but not LOOP-computable?

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 33 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

Ackermann Function: History

▶ David Hilbert (1926) conjectured that all computable
total functions are primitive recursive (= LOOP-computable).

▶ Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

▶ The counterexample was simplified by Rózsa Péter (1935).

⇝ here: simplified version

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 34 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

Ackermann Function

Definition (Ackermann function)

The Ackermann function a : N2
0 → N0 is defined as follows:

a(0, y) = y + 1 for all y ≥ 0

a(x , 0) = a(x − 1, 1) for all x > 0

a(x , y) = a(x − 1, a(x , y − 1)) for all x , y > 0

Note: the recursion in the definition is bounded,
Note: so this defines a total function.

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 35 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

Table of Values

y = 0 y = 1 y = 2 y = 3 y = k

a(0, y) 1 2 3 4 k + 1

a(1, y) 2 3 4 5 k + 2

a(2, y) 3 5 7 9 2k + 3

a(3, y) 5 13 29 61 2k+3 − 3

a(4, y) 13 65533 265536−3 22
65536−3 22

···
2︸︷︷︸

k+3

−3

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 36 / 39

E1. LOOP & WHILE Computability WHILE vs. LOOP

Computability of the Ackermann Function

Theorem
The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 37 / 39

E1. LOOP & WHILE Computability Summary

E1.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 38 / 39

E1. LOOP & WHILE Computability Summary

Summary

▶ new models of computation for numerical functions:
LOOP and WHILE programs

▶ closer to typical programming languages than Turing machines

▶ WHILE programs strictly more powerful than LOOP programs.
▶ WHILE-, but not LOOP-computable functions:

▶ simple example: function that is undefined everywhere
▶ more interesting example (total function):

Ackermann function, which grows too fast
to be LOOP-computable

Gabriele Röger (University of Basel) Theory of Computer Science May 22, 2023 39 / 39

	Introduction
	

	LOOP Programs
	

	WHILE Programs
	

	WHILE vs. LOOP
	

	Summary
	

