Theory of Computer Science E1. LOOP & WHILE Computability

Gabriele Röger

University of Basel

May 22, 2023

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 1 / 39

Theory of Computer Science May 22, 2023 — E1. LOOP & WHILE Computability

E1.1 Introduction

E1.2 LOOP Programs

E1.3 WHILE Programs

E1.4 WHILE vs. LOOP

E1.5 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 2 / 39

Overview: Course

contents of this course:

- A. background \checkmark
 - b mathematical foundations and proof techniques
- B. automata theory and formal languages √▷ What is a computation?
- C. Turing computability 🗸
 - ▷ What can be computed at all?
- D. complexity theory \checkmark
 - What can be computed efficiently?
- E. more computability theory
 - ▷ Other models of computability

E1.1 Introduction

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- (primitive recursive and μ -recursive functions)

In this and the following chapter we get to know three simple models of computation (programming languages) and compare their power to Turing machines:

- LOOP programs ~> today
- WHILE programs ~> today
- ► GOTO programs ~→ F2
- Comparison to DTMs ~~ F2

LOOP, WHILE and GOTO Programs: Basic Concepts

- LOOP, WHILE and GOTO programs are structured like programs in (simple) "traditional" programming languages
- ▶ use finitely many variables from the set {x₀, x₁, x₂, ...} that can take on values in N₀
- differ from each other in the allowed "statements"

E1.2 LOOP Programs

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 7 / 39

LOOP Programs: Syntax

Definition (Semantics of LOOP Programs)

A LOOP program computes a *k*-ary function

- $f: \mathbb{N}_0^k \to \mathbb{N}_0$. The computation of $f(n_1, \ldots, n_k)$ works as follows:
 - Initially, the variables x₁,..., x_k hold the values n₁,..., n_k.
 All other variables hold the value 0.
 - Ouring computation, the program modifies the variables as described on the following slides.
 - The result of the computation $(f(n_1, ..., n_k))$ is the value of x_0 after the execution of the program.

```
Definition (Semantics of LOOP Programs)
```

effect of $x_i := x_j + c$:

- The variable x_i is assigned the current value of x_j plus c.
- All other variables retain their value.

Definition (Semantics of LOOP Programs)

effect of $x_i := x_j - c$:

- The variable x_i is assigned the current value of x_j minus c if this value is non-negative.
- Otherwise x_i is assigned the value 0.
- All other variables retain their value.

```
Definition (Semantics of LOOP Programs)
effect of P<sub>1</sub>; P<sub>2</sub>:
▶ First, execute P<sub>1</sub>.
Then, execute P<sub>2</sub> (on the modified variable values).
```

Definition (Semantics of LOOP Programs) effect of LOOP x_i DO P END:

- Let *m* be the value of variable x_i at the start of execution.
- The program P is executed m times in sequence.

LOOP-Computable Functions

Definition (LOOP-Computable)

A function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called LOOP-computable if a LOOP program that computes f exists.

Note: non-total functions are never LOOP-computable. (Why not?)

LOOP Programs: Example

```
Example (LOOP program for f(x_1, x_2))

LOOP x_1 DO

LOOP x_2 DO

x_0 := x_0 + 1

END

END
```

Which (binary) function does this program compute?

Syntactic Sugar or Essential Feature?

- We investigate the power of programming languages and other computation formalisms.
- Rich language features help when writing complex programs.
- Minimalistic formalisms are useful for proving statements over all programs.
- → conflict of interest!

Idea:

- Use minimalistic core for proofs.
- Use syntactic sugar when writing programs.

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

•
$$x_i := x_j$$
 for $i, j \in \mathbb{N}_0$

•
$$x_i := c$$
 for $i, c \in \mathbb{N}_0$

•
$$x_i := x_j + x_k$$
 for $i, j, k \in \mathbb{N}_0$

▶ IF
$$x_i \neq 0$$
 THEN *P* END for $i \in \mathbb{N}_0$

▶ IF
$$x_i = c$$
 THEN P END for $i, c \in \mathbb{N}_0$

Can we simulate these with the existing constructs?

```
Example (syntactic sugar)
x_i := x_j for i, j \in \mathbb{N}_0
```

Simple abbreviation for $x_i := x_i + 0$.

```
Example (syntactic sugar)

x_i := c for i, c \in \mathbb{N}_0

Simple abbreviation for x_i := x_j + c,

where x_j is a fresh variable, i.e., an otherwise unused variable

that is not an input variable.

(Thus x_j must always have the value 0 in all executions.)
```

```
Example (syntactic sugar)
x_i := x_i + x_k for i, j, k \in \mathbb{N}_0
Abbreviation for:
     x_i := x_i;
     LOOP Xk DO
        x_i := x_i + 1
     END
Analogously we will also use the following:
  \blacktriangleright x_i := x_i - x_k
  (x_i) := x_i + x_k - c - x_m + d
  etc.
```

E1. LOOP & WHILE Computability

```
Example (syntactic sugar)
IF x_i \neq 0 THEN P END for i \in \mathbb{N}_0
Abbreviation for:
     x_i := 0;
     LOOP x<sub>i</sub> DO
        x_i := 1
      END:
     LOOP x<sub>i</sub> DO
         Ρ
      END
where x_i is a fresh variable.
```

```
Example (syntactic sugar)
IF x_i = c THEN P END for i, c \in \mathbb{N}_0
Abbreviation for:
     x_i := 1;
     x_k := x_i - c;
     IF x_k \neq 0 THEN x_i := 0 END;
     x_k := c - x_i;
     IF x_k \neq 0 THEN x_i := 0 END;
     IF x_i \neq 0 THEN
        Ρ
     END
where x_i and x_k are fresh variables.
```

E1.3 WHILE Programs

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 23 / 39

WHILE Programs: Syntax

Definition (WHILE Program) WHILE programs are inductively defined as follows: $\blacktriangleright x_i := x_i + c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (addition) $\blacktriangleright x_i := x_i - c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (modified subtraction) \triangleright If P_1 and P_2 are WHILE programs, then so is $P_1; P_2$ (composition) ▶ If *P* is a WHILE program, then so is WHILE $x_i \neq 0$ DO P END for every $i \in \mathbb{N}_0$ (WHILE loop)

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs) The semantics of WHILE programs is defined exactly as for LOOP programs.

effect of WHILE $x_i \neq 0$ DO P END:

- If x_i holds the value 0, program execution finishes.
- ► Otherwise execute *P*.
- Repeat these steps until execution finishes (potentially infinitely often).

E1. LOOP & WHILE Computability

WHILE-Computable Functions

Definition (WHILE-Computable)

A function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called WHILE-computable if a WHILE program that computes f exists.

E1. LOOP & WHILE Computability

WHILE Programs

WHILE-Program: Example

Example WHILE $x_1 \neq 0$ DO $x_1 := x_1 - x_2;$ $x_0 := x_0 + 1$ END

What function $f(x_1, x_2)$ does this program compute?

E1.4 WHILE vs. LOOP

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 28 / 39

WHILE-Computability vs. LOOP-Computability

Theorem

Every LOOP-computable function is WHILE-computable. The converse is not true.

WHILE programs are therefore strictly more powerful than LOOP programs.

WHILE-Computability vs. LOOP-Computability

```
Proof
Part 1: Every LOOP-computable function is WHILE-computable.
Given any LOOP program, we construct an equivalent
WHILE program, i.e., one computing the same function.
To do so, replace each occurrence of LOOP x_i DO P END with
    x_i := x_i;
    WHILE x_i \neq 0 DO
      x_i := x_i - 1;
       Ρ
    END
where x_i is a fresh variable.
                                                               . . .
```

WHILE-Computability vs. LOOP-Computability

```
Proof (continued).
Part 2: Not all WHILE-computable functions are
LOOP-computable.
The WHILE program
    x_1 := 1;
    WHILE x_1 \neq 0 DO
       x_1 := 1
     END
computes the function \Omega : \mathbb{N}_0 \to_p \mathbb{N}_0 that is undefined everywhere.
\Omega is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total).
```

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with WHILE programs, we can use all syntactic sugar we have seen for LOOP programs in WHILE programs e.g.

►
$$x_i := x_j$$
 for $i, j \in \mathbb{N}_0$

$$\blacktriangleright x_i := c \text{ for } i, c \in \mathbb{N}_0$$

•
$$x_i := x_j + x_k$$
 for $i, j, k \in \mathbb{N}_0$

▶ IF
$$x_i \neq 0$$
 THEN *P* END for $i \in \mathbb{N}_0$

▶ IF $x_i = c$ THEN P END for $i, c \in \mathbb{N}_0$

LOOP vs. WHILE: Is There a Practical Difference?

- We have shown that WHILE programs are strictly more powerful than LOOP programs.
- The example we used is not very relevant in practice because our argument only relied on the fact that LOOP-computable functions are always total.
- To terminate for every input is not much of a problem in practice. (Quite the opposite.)
- Are there any total functions that are WHILE-computable, but not LOOP-computable?

Ackermann Function: History

- David Hilbert (1926) conjectured that all computable total functions are primitive recursive (= LOOP-computable).
- Wilhelm Ackermann refuted the conjecture by supplying a counterexample (1928).
- The counterexample was simplified by Rózsa Péter (1935).

 here: simplified version

Ackermann Function

Definition (Ackermann function)The Ackermann function $a: \mathbb{N}_0^2 \to \mathbb{N}_0$ is defined as follows:a(0, y) = y + 1for all $y \ge 0$ a(x, 0) = a(x - 1, 1)for all x > 0a(x, y) = a(x - 1, a(x, y - 1))for all x, y > 0

Note: the recursion in the definition is bounded, so this defines a total function.

Table of Values

	<i>y</i> = 0	y = 1	<i>y</i> = 2	<i>y</i> = 3	y = k
a(0, y)	1	2	3	4	k+1
a(1, y)	2	3	4	5	<i>k</i> + 2
a(2, y)	3	5	7	9	2k + 3
a(3, y)	5	13	29	61	$2^{k+3} - 3$
a(4, y)	13	65533	2 ⁶⁵⁵³⁶ -3	$2^{2^{65536}} - 3$	$2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$

Gabriele Röger (University of Basel)

Theory of Computer Science

May 22, 2023 36 / 39

E1. LOOP & WHILE Computability

WHILE vs. LOOP

Computability of the Ackermann Function

Theorem

The Ackermann function is WHILE-computable, but not LOOP-computable.

(Without proof.)

E1.5 Summary

Summary

- new models of computation for numerical functions: LOOP and WHILE programs
- closer to typical programming languages than Turing machines
- WHILE programs strictly more powerful than LOOP programs.
- WHILE-, but not LOOP-computable functions:
 - simple example: function that is undefined everywhere
 - more interesting example (total function): Ackermann function, which grows too fast to be LOOP-computable