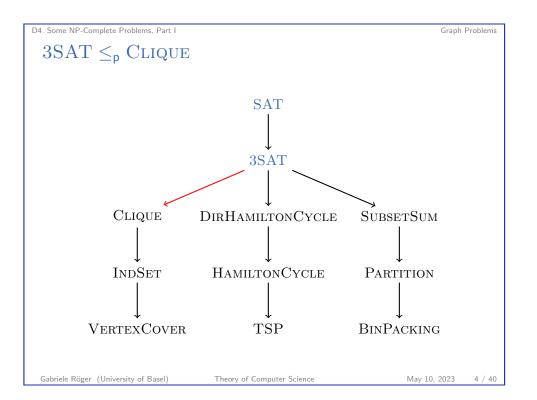


	Gabriele Röger		
	University of Basel		
	May 10, 2023		
Gabriele Röger (University of Basel)	Theory of Computer Science	May 10, 2023	1 / 40

D4. Some NP-Complete Problems, Part I

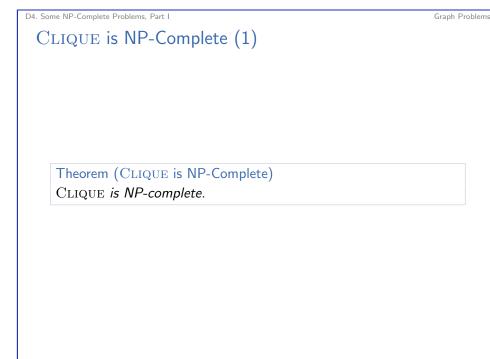

Graph Problems

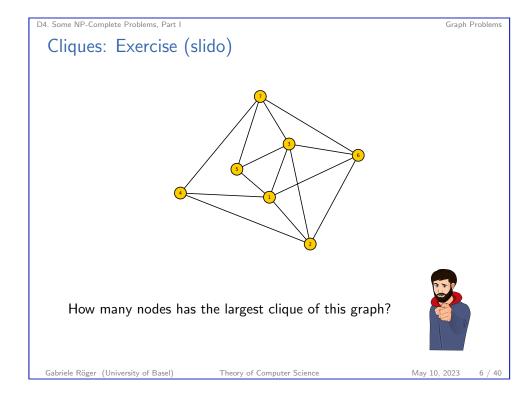
D4.1 Graph Problems

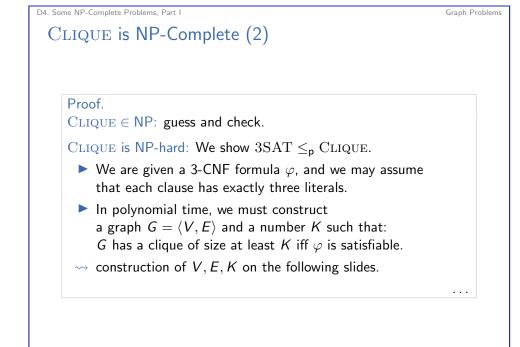
D4.1 Graph Problems D4.2 Routing Problems

Theory of Computer Science

May 10, 2023 — D4. Some NP-Complete Problems, Part I

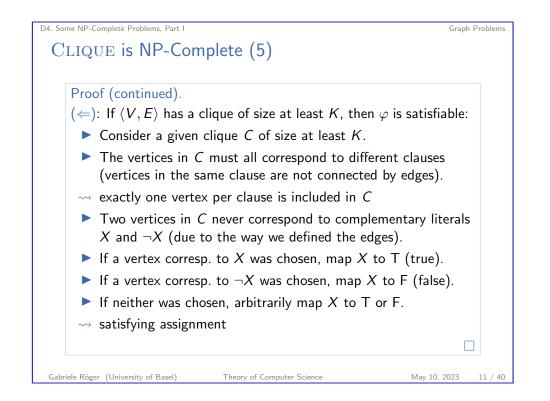


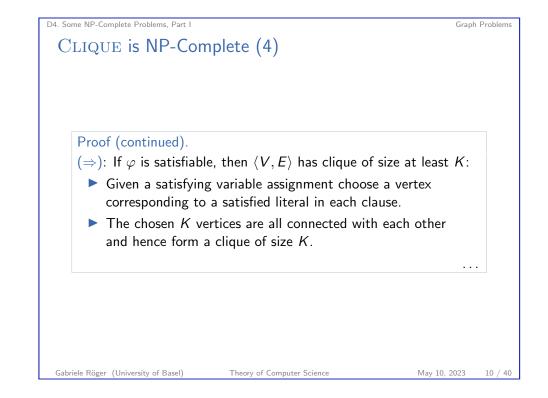

May 10, 2023 2 / 40

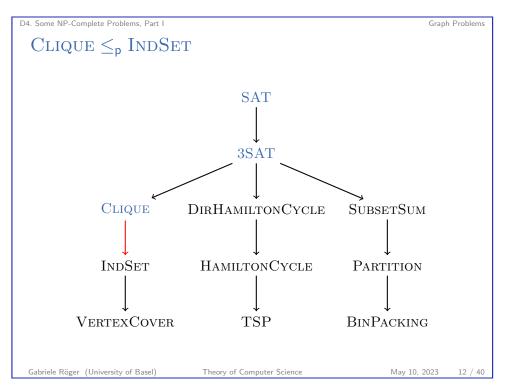

Graph Problems

CLIQUE

Definition (CLIQUE)The problem CLIQUE is defined as follows:Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$ Question: Does G have a clique of size at least K,i. e., a set of vertices $C \subseteq V$ with $|C| \ge K$ and $\{u, v\} \in E$ for all $u, v \in C$ with $u \neq v$?Gabriele Röger (University of Base)

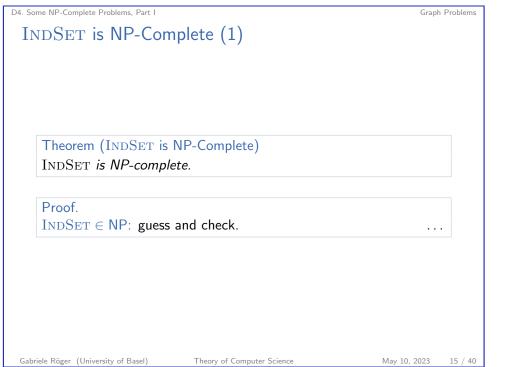

Gabriele Röger (University of Basel)

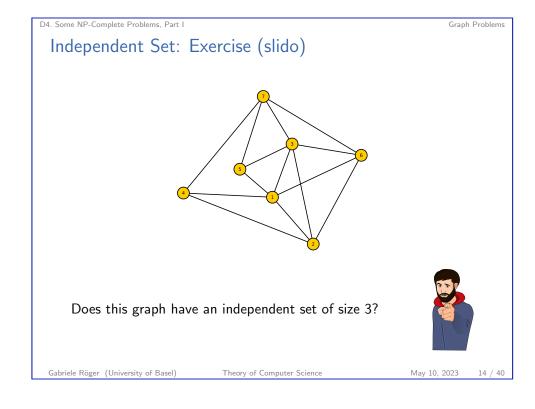

Gabriele Röger (University of Basel)


CLIQUE is NP-Complete (3)

Let <i>m</i> be the numbe	r of clauses in $arphi$.	
et ℓ{ij} the j -th literal	in clause <i>i</i> .	
Define V, E, K as fo	llows:	
 <i>E</i> contains edge <i>i</i> ≠ <i>i</i>' → bel 	$\{i \leq m, 1 \leq j \leq 3\}$ every literal of every clause between $\langle i, j \rangle$ and $\langle i', j' \rangle$ if and ong to different clauses, and are not complementary literals	nd only if
↔ obviously polynon	nially computable	
to show: reduction p	roperty	

Graph Problems

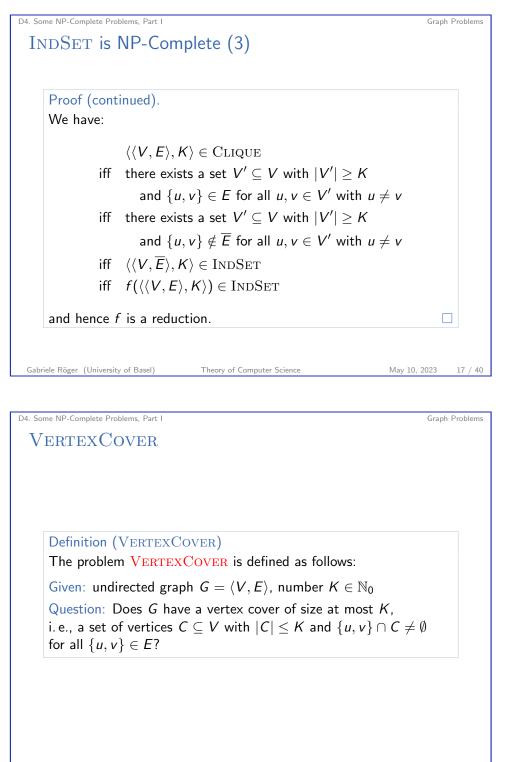



D4. Some NP-Complete Problems, Part I

Graph Problems

INDSET

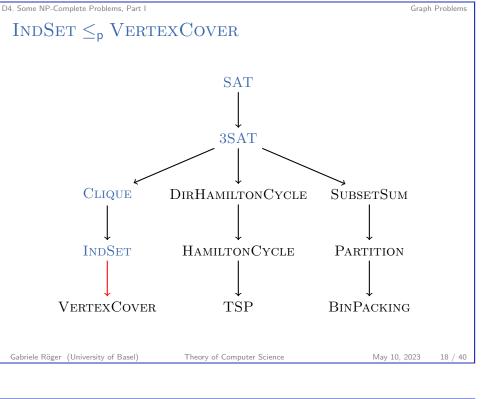
Definition (INDSET) The problem INDSET is defined as follows: Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$ Question: Does G have an independent set of size at least K, i.e., a set of vertices $I \subseteq V$ with $|I| \ge K$ and $\{u, v\} \notin E$ for all $u, v \in I$ with $u \neq v$? Gabriele Röger (University of Basel) Theory of Computer Science May 10, 2023 13 / 40



D4. Some NP-Complete Problems. Part I Graph Problems INDSET is NP-Complete (2) Proof (continued). INDSET is NP-hard: We show CLIQUE \leq_p INDSET. We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE. Then $f(\langle G, K \rangle)$ is the INDSET instance $\langle \overline{G}, K \rangle$, where $\overline{G} := \langle V, \overline{E} \rangle$ and $\overline{E} := \{ \{u, v\} \subseteq V \mid u \neq v, \{u, v\} \notin E \}.$ (This graph \overline{G} is called the complement graph of G.) Clearly f can be computed in polynomial time. . . .

Gabriele Röger (University of Basel)

Theory of Computer Science


May 10, 2023 16 / 40

Theory of Computer Science

May 10, 2023

19 / 40

May 10, 2023

21 / 40

VERTEXCOVER is NP-Complete (1)

Theorem (VERTEXCOVER is NP-Complete) VERTEXCOVER *is NP-complete*.

Gabriele Röger (University of Basel)

Theory of Computer Science

D4. Some NP-Complete Problems. Part I Graph Problems VERTEXCOVER is NP-Complete (3) Proof (continued). For vertex set $V' \subseteq V$, we write $\overline{V'}$ for its complement $V \setminus V'$. Observation: a set of vertices is a vertex cover iff its complement is an independent set. We thus have: $\langle \langle V, E \rangle, K \rangle \in \text{INDSET}$ iff $\langle V, E \rangle$ has an independent set I with |I| > Kiff $\langle V, E \rangle$ has a vertex cover C with $|\overline{C}| \geq K$ iff $\langle V, E \rangle$ has a vertex cover C with $|C| \leq |V| - K$ iff $\langle \langle V, E \rangle, |V| - K \rangle \in \text{VERTEXCOVER}$ iff $f(\langle \langle V, E \rangle, K \rangle) \in \text{VERTEXCOVER}$ and hence f is a reduction. Gabriele Röger (University of Basel) Theory of Computer Science May 10, 2023 23 / 40

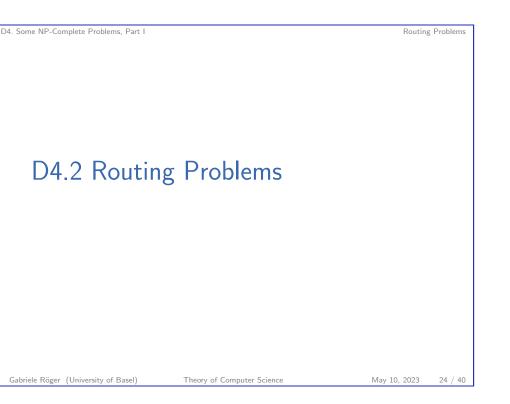
VERTEXCOVER is NP-Complete (2)

Proof.

 $\mathbf{V}\mathtt{ERTEXCOVER} \in \mathsf{NP}\mathtt{:}$ guess and check.

VERTEXCOVER is NP-hard:

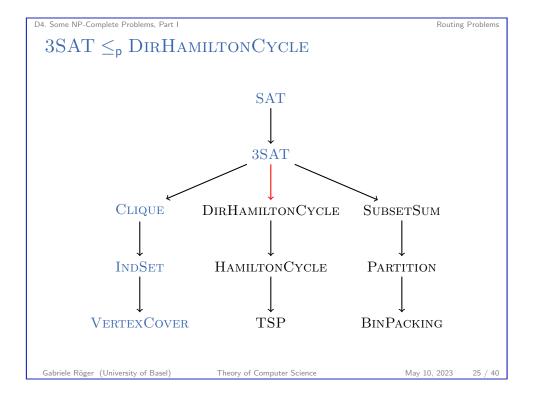
We show INDSET \leq_p VERTEXCOVER.


We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for INDSET.

Theory of Computer Science

Then $f(\langle G, K \rangle) := \langle G, |V| - K \rangle$. This can clearly be computed in polynomial time.

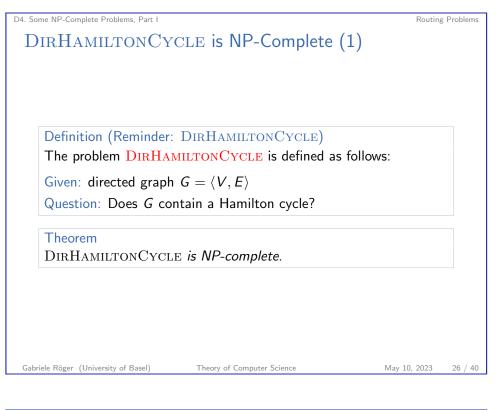
Gabriele Röger (University of Basel)


May 10, 2023

Graph Problems

. . .

22 / 40



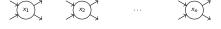
D4. Some NP-Complete Problems, Part I

Routing Problems

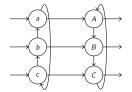
DIRHAMILTONCYCLE is NP-Complete (2)

Proof. DIRHAMILTONCYCLE \in NP: guess and check. DIRHAMILTONCYCLE is NP-hard: We show $3SAT \leq_p DIRHAMILTONCYCLE$. \blacktriangleright We are given a 3-CNF formula φ where each clause contains exactly three literals and no clause contains duplicated literals. ▶ We must, in polynomial time, construct a directed graph $G = \langle V, E \rangle$ such that: G contains a Hamilton cycle iff φ is satisfiable. \blacktriangleright construction of $\langle V, E \rangle$ on the following slides

. . .


Theory of Computer Science

Routing Problems


DIRHAMILTONCYCLE is NP-Complete (4)

Proof (continued).

For every variable X_i, add vertex x_i with 2 incoming and 2 outgoing edges:

For every clause c_j , add the subgraph C_j with 6 vertices:

Theory of Computer Science

▶ We describe later how to connect these parts.

Gabriele Röger (University of Basel)

D4. Some NP-Complete Problems. Part I

Routing Problems

May 10, 2023

. . .

29 / 40

DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).

Connect the "open ends" in the graph as follows:

- Identify entrances/exits of the clause subgraph C_j with the three literals in clause c_j.
- One exit of x_i is positive, the other one is negative.
- For the positive exit, determine the clauses in which the positive literal X_i occurs:
 - Connect the positive exit of x_i with the X_i-entrance of the first such clause graph.
 - Connect the X_i-exit of this clause graph with the X_i-entrance of the second such clause graph, and so on.
 - Connect the X_i-exit of the last such clause graph with the positive entrance of x_{i+1} (or x₁ if i = n).
- ▶ analogously for the negative exit of x_i and the literal $\neg X_i$

. . .

D4. Some NP-Complete Problems, Part I

DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

Whenever π enters subgraph C_j from one of its "entrances", it must leave via the corresponding "exit":

 $(a \longrightarrow A, b \longrightarrow B, c \longrightarrow C).$

Otherwise, π cannot be a Hamilton cycle.

- Hamilton cycles can behave in the following ways with regard to C_j:
 - π passes through C_j once (from any entrance)
 - π passes through C_j twice (from any two entrances)
 - π passes through C_j three times (once from every entrance)

Gabriele Röger (University of Basel)

Theory of Computer Science

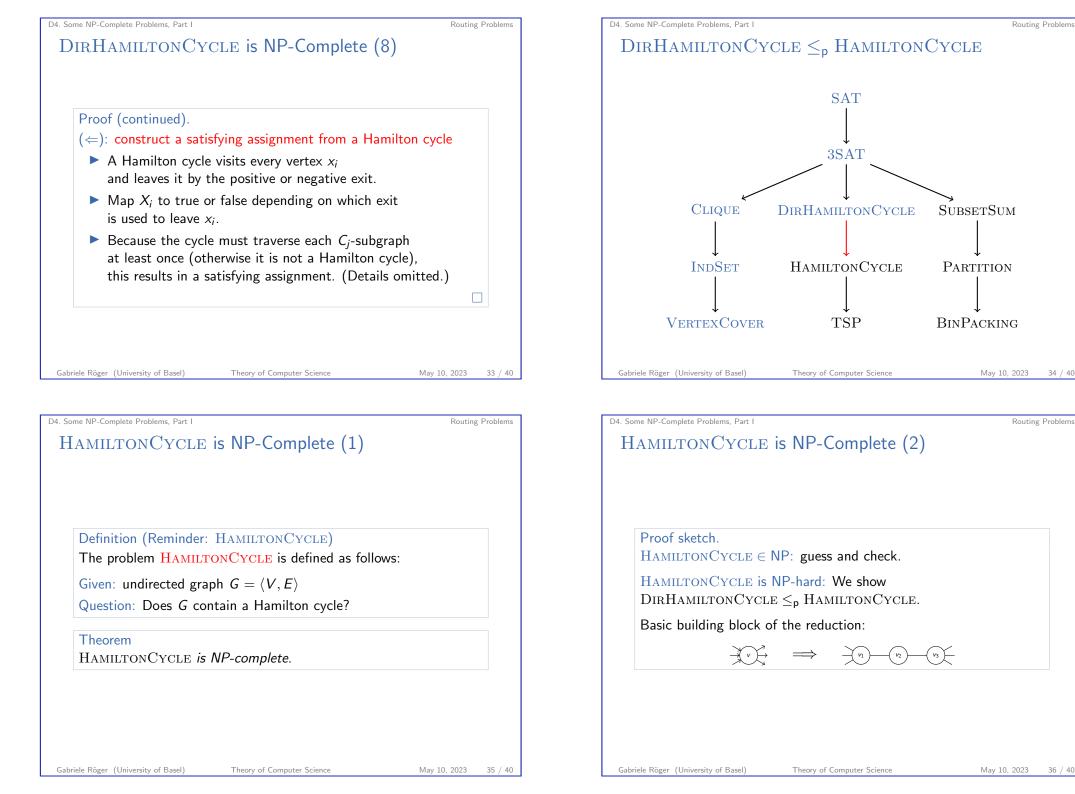
May 10, 2023 30 / 40

Routing Problems

. . .

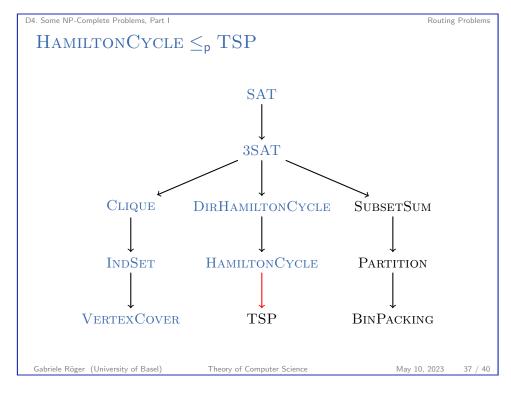
Routing Problems

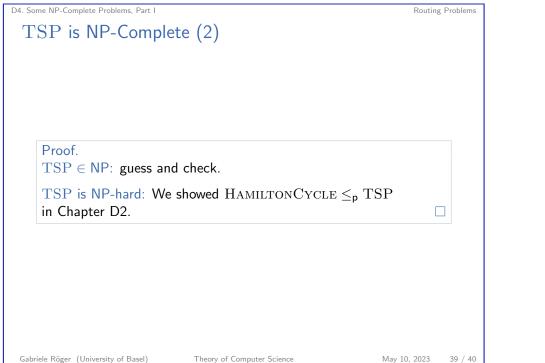
D4. Some NP-Complete Problems, Part I DIRHAMILTONCYCLE is NP-Complete (7)

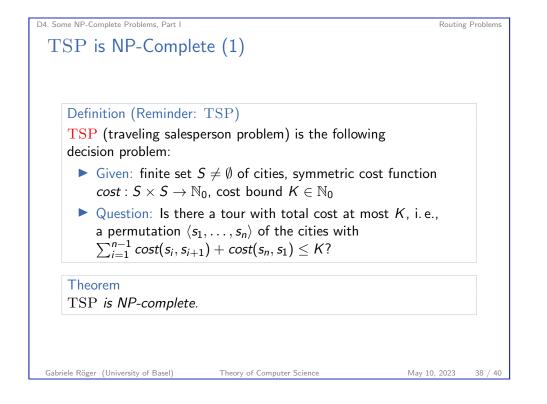

Proof (continued).

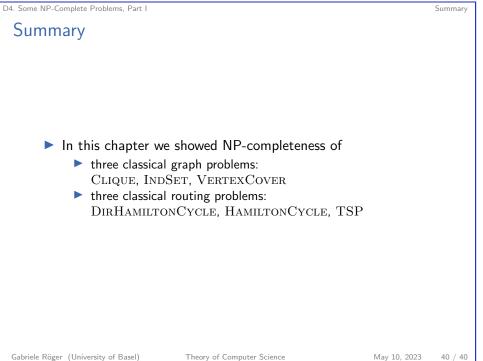
The construction is polynomial and is a reduction:

- (\Rightarrow) : construct a Hamilton cycle from a satisfying assignment
- Given a satisfying assignment *I*, construct a Hamilton cycle that leaves x_i through the positive exit if *I*(X_i) is true and by the negative exit if *I*(X_i) is false.
- Afterwards, we visit all C_j-subgraphs for clauses that are satisfied by this literal.
- ▶ In total, we visit each C_j -subgraph 1–3 times.


Gabriele Röger (University of Basel)


. . .




34 / 40

36 / 40

