Theory of Computer Science D4. Some NP-Complete Problems, Part I

Gabriele Röger

University of Basel

May 10, 2023

Gabriele Röger (University of Basel)

Theory of Computer Science

May 10, 2023 1 / 40

Theory of Computer Science May 10, 2023 — D4. Some NP-Complete Problems, Part I

D4.1 Graph Problems

D4.2 Routing Problems

Gabriele Röger (University of Basel)

Theory of Computer Science

May 10, 2023 2 / 40

D4.1 Graph Problems

$3SAT \leq_p CLIQUE$

CLIQUE

Definition (CLIQUE) The problem CLIQUE is defined as follows: Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$ Question: Does G have a clique of size at least K, i. e., a set of vertices $C \subseteq V$ with $|C| \ge K$ and $\{u, v\} \in E$ for all $u, v \in C$ with $u \neq v$?

Cliques: Exercise (slido)

How many nodes has the largest clique of this graph?

Gabriele Röger (University of Basel)

Theory of Computer Science

Graph Problems

CLIQUE is NP-Complete (1)

Theorem (CLIQUE is NP-Complete) CLIQUE *is NP-complete*.

CLIQUE is NP-Complete (2)

CLIQUE is NP-Complete (3)

CLIQUE is NP-Complete (4)

Proof (continued).

- (\Rightarrow): If φ is satisfiable, then $\langle V, E \rangle$ has clique of size at least K:
 - Given a satisfying variable assignment choose a vertex corresponding to a satisfied literal in each clause.
 - The chosen K vertices are all connected with each other and hence form a clique of size K.

CLIQUE is NP-Complete (5)

Proof (continued).

(\Leftarrow): If $\langle V, E \rangle$ has a clique of size at least K, then φ is satisfiable:

- Consider a given clique C of size at least K.
- The vertices in C must all correspond to different clauses (vertices in the same clause are not connected by edges).
- \rightsquigarrow exactly one vertex per clause is included in C
- ► Two vertices in C never correspond to complementary literals X and ¬X (due to the way we defined the edges).
- ▶ If a vertex corresp. to X was chosen, map X to T (true).
- ▶ If a vertex corresp. to $\neg X$ was chosen, map X to F (false).
- If neither was chosen, arbitrarily map X to T or F.
- \rightsquigarrow satisfying assignment

$\mathrm{CLIQUE} \leq_{\mathsf{p}} \mathrm{INDSET}$

INDSET

Definition (INDSET) The problem INDSET is defined as follows: Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$ Question: Does G have an independent set of size at least K, i. e., a set of vertices $I \subseteq V$ with $|I| \ge K$ and $\{u, v\} \notin E$ for all $u, v \in I$ with $u \neq v$?

Independent Set: Exercise (slido)

Does this graph have an independent set of size 3?

Gabriele Röger (University of Basel)

Theory of Computer Science

Graph Problems

INDSET is NP-Complete (1)

Theorem (INDSET is NP-Complete) INDSET *is NP-complete*.

 $\label{eq:proof.} Proof. \\ {\rm INDSET} \in NP: \mbox{ guess and check.} \\$

INDSET is NP-Complete (2)

Proof (continued). INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$. We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE. Then $f(\langle G, K \rangle)$ is the INDSET instance $\langle \overline{G}, K \rangle$, where $\overline{G} := \langle V, \overline{E} \rangle$ and $\overline{E} := \{\{u, v\} \subseteq V \mid u \neq v, \{u, v\} \notin E\}$. (This graph \overline{G} is called the complement graph of G.) Clearly f can be computed in polynomial time.

INDSET is NP-Complete (3)

```
Proof (continued).
We have:
                   \langle \langle V, E \rangle, K \rangle \in \text{CLIQUE}
            iff there exists a set V' \subseteq V with |V'| \ge K
                      and \{u, v\} \in E for all u, v \in V' with u \neq v
            iff there exists a set V' \subseteq V with |V'| > K
                      and \{u, v\} \notin \overline{E} for all u, v \in V' with u \neq v
            iff \langle \langle V, \overline{E} \rangle, K \rangle \in \text{INDSET}
            iff f(\langle \langle V, E \rangle, K \rangle) \in \text{INDSET}
and hence f is a reduction.
```

INDSET \leq_p VERTEXCOVER

VERTEXCOVER

Definition (VERTEXCOVER) The problem VERTEXCOVER is defined as follows: Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$ Question: Does G have a vertex cover of size at most K, i. e., a set of vertices $C \subseteq V$ with $|C| \leq K$ and $\{u, v\} \cap C \neq \emptyset$ for all $\{u, v\} \in E$?

Vertex Cover: Exercise (slido)

Does this graph have a vertex cover of size 4?

Gabriele Röger (University of Basel)

Theory of Computer Science

VERTEXCOVER is NP-Complete (1)

Theorem (VERTEXCOVER is NP-Complete) VERTEXCOVER *is NP-complete*.

VERTEXCOVER is NP-Complete (2)

Proof. VERTEXCOVER \in NP: guess and check. VERTEXCOVER is NP-hard: We show INDSET \leq_p VERTEXCOVER. We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for INDSET. Then $f(\langle G, K \rangle) := \langle G, |V| - K \rangle$. This can clearly be computed in polynomial time.

VERTEXCOVER is NP-Complete (3)

```
Proof (continued).
For vertex set V' \subseteq V, we write \overline{V'} for its complement V \setminus V'.
Observation: a set of vertices is a vertex cover
iff its complement is an independent set.
We thus have:
                \langle \langle V, E \rangle, K \rangle \in \text{INDSET}
         iff \langle V, E \rangle has an independent set I with |I| \geq K
         iff \langle V, E \rangle has a vertex cover C with |\overline{C}| \geq K
         iff \langle V, E \rangle has a vertex cover C with |C| \leq |V| - K
         iff \langle \langle V, E \rangle, |V| - K \rangle \in \text{VERTEXCOVER}
         iff f(\langle \langle V, E \rangle, K \rangle) \in \text{VERTEXCOVER}
```

and hence f is a reduction.

D4.2 Routing Problems

$3SAT \leq_p DIRHAMILTONCYCLE$

DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE) The problem DIRHAMILTONCYCLE is defined as follows:

```
Given: directed graph G = \langle V, E \rangle
```

Question: Does G contain a Hamilton cycle?

Theorem DIRHAMILTONCYCLE *is NP-complete*.

DIRHAMILTONCYCLE is NP-Complete (2)

Proof DIRHAMILTONCYCLE \in NP: guess and check. DIRHAMILTONCYCLE is NP-hard: We show $3SAT \leq_{p} DIRHAMILTONCYCLE$. \blacktriangleright We are given a 3-CNF formula φ where each clause contains exactly three literals and no clause contains duplicated literals. We must, in polynomial time, construct a directed graph $G = \langle V, E \rangle$ such that: G contains a Hamilton cycle iff φ is satisfiable. • construction of $\langle V, E \rangle$ on the following slides

Gabriele Röger (University of Basel)

DIRHAMILTONCYCLE is NP-Complete (3)

Proof (continued).

- Let X_1, \ldots, X_n be the atomic propositions in φ .
- Let c_1, \ldots, c_m be the clauses of φ with $c_i = (\ell_{i1} \lor \ell_{i2} \lor \ell_{i3})$.
- Construct a graph with 6m + n vertices (described on the following slides).

DIRHAMILTONCYCLE is NP-Complete (4)

Gabriele Röger (University of Basel)

DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued). Let π be a Hamilton cycle of the total graph. • Whenever π enters subgraph C_i from one of its "entrances", it must leave via the corresponding "exit": $(a \longrightarrow A, b \longrightarrow B, c \longrightarrow C).$ Otherwise, π cannot be a Hamilton cycle. Hamilton cycles can behave in the following ways with regard to C_i : $\blacktriangleright \pi$ passes through C_i once (from any entrance) $\blacktriangleright \pi$ passes through C_i twice (from any two entrances) $\blacktriangleright \pi$ passes through C_i three times (once from every entrance)

DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).

Connect the "open ends" in the graph as follows:

- Identify entrances/exits of the clause subgraph C_j with the three literals in clause c_j.
- One exit of x_i is positive, the other one is negative.
- For the positive exit, determine the clauses in which the positive literal X_i occurs:
 - Connect the positive exit of x_i with the X_i-entrance of the first such clause graph.
 - Connect the X_i-exit of this clause graph with the X_i-entrance of the second such clause graph, and so on.
 - Connect the X_i-exit of the last such clause graph with the positive entrance of x_{i+1} (or x₁ if i = n).

▶ analogously for the negative exit of x_i and the literal $\neg X_i$

DIRHAMILTONCYCLE is NP-Complete (7)

Proof (continued).

The construction is polynomial and is a reduction:

- (\Rightarrow) : construct a Hamilton cycle from a satisfying assignment
 - ► Given a satisfying assignment *I*, construct a Hamilton cycle that leaves x_i through the positive exit if *I*(X_i) is true and by the negative exit if *I*(X_i) is false.
 - Afterwards, we visit all C_j-subgraphs for clauses that are satisfied by this literal.
 - ln total, we visit each C_j -subgraph 1–3 times.

DIRHAMILTONCYCLE is NP-Complete (8)

Proof (continued).

 (\Leftarrow) : construct a satisfying assignment from a Hamilton cycle

- A Hamilton cycle visits every vertex x_i and leaves it by the positive or negative exit.
- Map X_i to true or false depending on which exit is used to leave x_i.
- Because the cycle must traverse each C_j-subgraph at least once (otherwise it is not a Hamilton cycle), this results in a satisfying assignment. (Details omitted.)

$\mathrm{DirHamiltonCycle} \leq_{p} \mathrm{HamiltonCycle}$

HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE) The problem HAMILTONCYCLE is defined as follows:

```
Given: undirected graph G = \langle V, E \rangle
```

Question: Does G contain a Hamilton cycle?

Theorem HAMILTONCYCLE *is NP-complete*.

HAMILTONCYCLE is NP-Complete (2)

Proof sketch. HAMILTONCYCLE \in NP: guess and check. HAMILTONCYCLE is NP-hard: We show DIRHAMILTONCYCLE \leq_{p} HAMILTONCYCLE.

Basic building block of the reduction:

HAMILTONCYCLE \leq_{p} TSP

TSP is NP-Complete (1)

Definition (Reminder: TSP)

TSP (traveling salesperson problem) is the following decision problem:

- ▶ Given: finite set $S \neq \emptyset$ of cities, symmetric cost function $cost : S \times S \rightarrow \mathbb{N}_0$, cost bound $K \in \mathbb{N}_0$
- ▶ Question: Is there a tour with total cost at most K, i.e., a permutation $\langle s_1, \ldots, s_n \rangle$ of the cities with $\sum_{i=1}^{n-1} cost(s_i, s_{i+1}) + cost(s_n, s_1) \leq K$?

Theorem TSP *is NP-complete.*

TSP is NP-Complete (2)

```
Proof. TSP \in NP: \text{ guess and check}.
TSP \text{ is NP-hard: We showed HAMILTONCYCLE} \leq_p TSPin Chapter D2.
```


- In this chapter we showed NP-completeness of
 - three classical graph problems: CLIQUE, INDSET, VERTEXCOVER
 - three classical routing problems: DIRHAMILTONCYCLE, HAMILTONCYCLE, TSP