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Polynomial Reductions: Idea

Reductions are a common and powerful concept in computer
science. We know them from Part C.

The basic idea is that we solve a new problem by reducing it
to a known problem.

In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).
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Polynomial Reductions

Definition (Polynomial Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be decision problems.
We say that A can be polynomially reduced to B,
written A ≤p B, if there is a function f : Σ∗ → Γ∗ such that:

f can be computed in polynomial time by a DTM

i. e., there is a polynomial p and a DTM M such that M
computes f (w) in at most p(|w |) steps given input w ∈ Σ∗

f reduces A to B

i. e., for all w ∈ Σ∗: w ∈ A iff f (w) ∈ B

f is called a polynomial reduction from A to B
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Polynomial Reductions: Remarks

Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

In practice, of course we do not have to specify a DTM for f :
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.
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Polynomial Reductions: Example (1)

Definition (HamiltonCycle)

HamiltonCycle is the following decision problem:

Given: undirected graph G = ⟨V ,E ⟩
Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V ,
π = ⟨v0, . . . , vn⟩, with the following properties:

π is a path: there is an edge from vi to vi+1 for all 0 ≤ i < n

π is a cycle: v0 = vn

π is simple: vi ̸= vj for all i ̸= j with i , j < n

π is Hamiltonian: all nodes of V are included in π
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Polynomial Reductions: Example (2)

Definition (TSP)

TSP (traveling salesperson problem) is the following
decision problem:

Given: finite set S ̸= ∅ of cities, symmetric cost function
cost : S × S → N0, cost bound K ∈ N0

Question: Is there a tour with total cost at most K , i. e.,
a permutation ⟨s1, . . . , sn⟩ of the cities with∑n−1

i=1 cost(si , si+1) + cost(sn, s1) ≤ K?
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Polynomial Reductions: Example (3)

Theorem (HamiltonCycle ≤p TSP)

HamiltonCycle ≤p TSP.

Proof.

⇝ blackboard
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Questions

Questions?
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Exercise: Polynomial Reduction

Definition (HamiltonianCompletion)

HamiltonianCompletion is the following decision problem:

Given: undirected graph G = ⟨V ,E ⟩, number k ∈ N0

Question: Can G be extended with at most k edges such that
the resulting graph has a Hamilton cycle?

Show that
HamiltonCycle ≤p HamiltonianCompletion.
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Reminder: P and NP

P: class of languages that are decidable in polynomial time

by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine
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Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.

1 If A ≤p B and B ∈ P, then A ∈ P.

2 If A ≤p B and B ∈ NP, then A ∈ NP.

3 If A ≤p B and A /∈ P, then B /∈ P.

4 If A ≤p B and A /∈ NP, then B /∈ NP.

5 If A ≤p B and B ≤p C, then A ≤p C.
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Properties of Polynomial Reductions (2)

Proof.

for 1.:

We must show that there is a DTM deciding A
in polynomial time.

We know:

There is a DTM MB that decides B in time p,
where p is a polynomial.

There is a DTM Mf that computes a reduction from A to B
in time q, where q is a polynomial.

. . .
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Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like Mf , and then
(after Mf stops) behaves like MB on the output of Mf .

M decides A:

M behaves on input w as MB does on input f (w),
so it accepts w if and only if f (w) ∈ B.

Because f is a reduction, w ∈ A iff f (w) ∈ B.

. . .
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Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w :

first Mf runs on input w : ≤ q(|w |) steps
then MB runs on input f (w): ≤ p(|f (w)|) steps
|f (w)| ≤ |w |+ q(|w |) because in q(|w |) steps,
Mf can write at most q(|w |) additional symbols onto the tape

⇝ total computation time ≤ q(|w |) + p(|f (w)|)
≤ q(|w |) + p(|w |+ q(|w |))

⇝ this is polynomial in |w | ⇝ A ∈ P.

. . .
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Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that MB and M are NTMs

of 3.+4.:
equivalent formulations of 1.+2. (contraposition)

of 5.:
Let A ≤p B with reduction f and B ≤p C with reduction g .
Then g ◦ f is a reduction of A to C .

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.
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Questions

Questions?
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NP-Hardness and NP-Completeness
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NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if A ≤p B for all problems A ∈ NP.

B is called NP-complete if B ∈ NP and B is NP-hard.
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NP-Complete Problems: Meaning

NP-hard problems are “at least as difficult”
as all problems in NP.

NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

If A ∈ P for any NP-complete problem A, then P = NP.
(Why?)

That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

Do NP-complete problems actually exist?
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Summary

polynomial reductions: A ≤p B if
there is a total function f computable in polynomial time,
such that for all words w : w ∈ A iff f (w) ∈ B

A ≤p B implies that A is “at most as difficult” as B

polynomial reductions are transitive

NP-hard problems B: A ≤p B for all A ∈ NP

NP-complete problems B: B ∈ NP and B is NP-hard
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