Theory of Computer Science

D2. Polynomial Reductions and NP-completeness

Gabriele Röger
University of Basel

May 3, 2023

Polynomial Reductions

Polynomial Reductions: Idea

■ Reductions are a common and powerful concept in computer science. We know them from Part C.

- The basic idea is that we solve a new problem by reducing it to a known problem.

Polynomial Reductions: Idea

■ Reductions are a common and powerful concept in computer science. We know them from Part C.

- The basic idea is that we solve a new problem by reducing it to a known problem.
- In complexity theory we want to use reductions that allow us to prove statements of the following kind: Problem A can be solved efficiently if problem B can be solved efficiently.
- For this, we need a reduction from A to B that can be computed efficiently itself (otherwise it would be useless for efficiently solving A).

Polynomial Reductions

Definition (Polynomial Reduction)

Let $A \subseteq \Sigma^{*}$ and $B \subseteq \Gamma^{*}$ be decision problems.
We say that A can be polynomially reduced to B, written $A \leq_{p} B$, if there is a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ such that:

■ f can be computed in polynomial time by a DTM

- i. e., there is a polynomial p and a DTM M such that M computes $f(w)$ in at most $p(|w|)$ steps given input $w \in \Sigma^{*}$
- f reduces A to B

■ i.e., for all $w \in \Sigma^{*}: w \in A$ iff $f(w) \in B$
f is called a polynomial reduction from A to B

Polynomial Reductions: Remarks

- Polynomial reductions are also called Karp reductions (after Richard Karp, who wrote a famous paper describing many such reductions in 1972).
■ In practice, of course we do not have to specify a DTM for f : it just has to be clear that f can be computed in polynomial time by a deterministic algorithm.

Polynomial Reductions: Example (1)

Definition (HamiltonCycle)

HamiltonCycle is the following decision problem:

- Given: undirected graph $G=\langle V, E\rangle$
- Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V, $\pi=\left\langle v_{0}, \ldots, v_{n}\right\rangle$, with the following properties:

■ π is a path: there is an edge from v_{i} to v_{i+1} for all $0 \leq i<n$

- π is a cycle: $v_{0}=v_{n}$

■ π is simple: $v_{i} \neq v_{j}$ for all $i \neq j$ with $i, j<n$

- π is Hamiltonian: all nodes of V are included in π

Polynomial Reductions: Example (2)

Definition (TSP)

TSP (traveling salesperson problem) is the following decision problem:

- Given: finite set $S \neq \emptyset$ of cities, symmetric cost function cost : $S \times S \rightarrow \mathbb{N}_{0}$, cost bound $K \in \mathbb{N}_{0}$
- Question: Is there a tour with total cost at most K, i.e., a permutation $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ of the cities with $\sum_{i=1}^{n-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right)+\operatorname{cost}\left(s_{n}, s_{1}\right) \leq K ?$

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE \leq_{p} TSP) HamiltonCycle \leq_{p} TSP.

Proof.

\rightsquigarrow blackboard

Questions

Questions?

Exercise: Polynomial Reduction

Definition (HamiltonianCompletion)

HamiltonianCompletion is the following decision problem:
■ Given: undirected graph $G=\langle V, E\rangle$, number $k \in \mathbb{N}_{0}$
■ Question: Can G be extended with at most k edges such that the resulting graph has a Hamilton cycle?

Show that
HamiltonCycle \leq_{p} HamiltonianCompletion.

Reminder: P and NP

P: class of languages that are decidable in polynomial time by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time by a non-deterministic Turing machine

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.
(1) If $A \leq_{p} B$ and $B \in P$, then $A \in P$.
(2) If $A \leq_{p} B$ and $B \in N P$, then $A \in N P$.
(3) If $A \leq_{p} B$ and $A \notin P$, then $B \notin P$.
(9) If $A \leq_{p} B$ and $A \notin N P$, then $B \notin N P$.
(9) If $A \leq_{p} B$ and $B \leq_{p} C$, then $A \leq_{p} C$.

Properties of Polynomial Reductions (2)

Proof.

for 1 .:
We must show that there is a DTM deciding A in polynomial time.

We know:

- There is a DTM M_{B} that decides B in time p, where p is a polynomial.
- There is a DTM M_{f} that computes a reduction from A to B in time q, where q is a polynomial.

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M_{f}, and then (after M_{f} stops) behaves like M_{B} on the output of M_{f}.
M decides A :

- M behaves on input w as M_{B} does on input $f(w)$, so it accepts w if and only if $f(w) \in B$.
- Because f is a reduction, $w \in A$ iff $f(w) \in B$.

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w :

- first M_{f} runs on input $w: \leq q(|w|)$ steps
- then M_{B} runs on input $f(w): \leq p(|f(w)|)$ steps

■ $|f(w)| \leq|w|+q(|w|)$ because in $q(|w|)$ steps, M_{f} can write at most $q(|w|)$ additional symbols onto the tape
\rightsquigarrow total computation time $\leq q(|w|)+p(|f(w)|)$

$$
\leq q(|w|)+p(|w|+q(|w|))
$$

\rightsquigarrow this is polynomial in $|w| \rightsquigarrow A \in \mathrm{P}$.

Properties of Polynomial Reductions (5)

Proof (continued).

for 2 .:
analogous to 1 ., only that M_{B} and M are NTMs

Properties of Polynomial Reductions (5)

Proof (continued).

for 2 .:
analogous to 1 ., only that M_{B} and M are NTMs
of $3 .+4$.:
equivalent formulations of 1. +2 . (contraposition)

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1 ., only that M_{B} and M are NTMs
of $3 .+4$.:
equivalent formulations of 1. +2 . (contraposition)
of 5 .:
Let $A \leq_{p} B$ with reduction f and $B \leq_{p} C$ with reduction g. Then $g \circ f$ is a reduction of A to C.

The computation time of the two computations in sequence is polynomial by the same argument used in the proof for 1 .

Questions

Questions?

NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.
B is called NP-hard if $A \leq_{\mathrm{p}} B$ for all problems $A \in \mathrm{NP}$.
B is called NP-complete if $B \in \mathrm{NP}$ and B is NP-hard.

NP-Complete Problems: Meaning

■ NP-hard problems are "at least as difficult" as all problems in NP.
■ NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.

NP-Complete Problems: Meaning

■ NP-hard problems are "at least as difficult" as all problems in NP.
■ NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
■ If $A \in \mathrm{P}$ for any NP-complete problem A, then $\mathrm{P}=\mathrm{NP}$. (Why?)

- That means that either there are efficient algorithms for all NP-complete problems or for none of them.

NP-Complete Problems: Meaning

■ NP-hard problems are "at least as difficult" as all problems in NP.
■ NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
■ If $A \in \mathrm{P}$ for any NP-complete problem A, then $\mathrm{P}=\mathrm{NP}$. (Why?)

- That means that either there are efficient algorithms for all NP-complete problems or for none of them.
■ Do NP-complete problems actually exist?

Questions

Questions?

Summary

Summary

- polynomial reductions: $A \leq_{\mathrm{p}} B$ if there is a total function f computable in polynomial time, such that for all words $w: w \in A$ iff $f(w) \in B$
- $A \leq_{\mathrm{p}} B$ implies that A is "at most as difficult" as B
- polynomial reductions are transitive

■ NP-hard problems $B: A \leq_{p} B$ for all $A \in$ NP
■ NP-complete problems $B: B \in$ NP and B is NP-hard

