Theory of Computer Science

C6. Rice's Theorem

Gabriele Röger

University of Basel

April 24, 2023

Rice's Theorem

- We have shown that the following problems are undecidable:
 - halting problem H
 - halting problem on empty tape H₀
 - post correspondence problem PCP
- Many more results of this type could be shown.
- Instead, we prove a much more general result,
 Rice's theorem, which shows that a very large class of different problems are undecidable.
- Rice's theorem can be summarized informally as:
 every non-trivial question about what a given Turing machine computes is undecidable.

Theorem (Rice's Theorem)

Let $\mathcal R$ be the class of all computable partial functions. Let $\mathcal S$ be an arbitrary subset of $\mathcal R$ except $\mathcal S=\emptyset$ or $\mathcal S=\mathcal R$. Then the language

$$C(S) = \{w \in \{0, 1\}^* \mid \text{the (partial) function computed by } M_w \text{ is in } S\}$$

is undecidable.

Question: why the restriction to $S \neq \emptyset$ and $S \neq R$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is Turing-recognizable. (But there are sets S for which one of the two languages is Turing-recognizable.)

Proof.

Let Ω be the partial function that is undefined everywhere.

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Let Q be a Turing machine that computes q.

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f: \{0,1\}^* \to \{0,1\}^*$, where f(w) is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

. . .

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f: \{0,1\}^* \to \{0,1\}^*$, where f(w) is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

f is total and computable.

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Proof (continued).

Which function is computed by the TM encoded by f(w)?

$$M_{f(w)}$$
 computes
$$\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$$

Proof (continued).

Which function is computed by the TM encoded by f(w)?

$$M_{f(w)}$$
 computes $\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

$$w \in H_0 \Longrightarrow M_w$$
 terminates on ε

$$\Longrightarrow M_{f(w)} \text{ computes the function } q$$

$$\Longrightarrow \text{ the function computed by } M_{f(w)} \text{ is not in } \mathcal{S}$$

$$\Longrightarrow f(w) \notin C(\mathcal{S})$$

. . .

Proof (continued).

Further:

```
w \notin H_0 \Longrightarrow M_w does not terminate on \varepsilon
\Longrightarrow M_{f(w)} computes the function \Omega
\Longrightarrow the function computed by M_{f(w)} is in \mathcal{S}
\Longrightarrow f(w) \in C(\mathcal{S})
```

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \bar{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \bar{H}_0 to C(S).

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in \mathcal{C}(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

We can conclude that C(S) is undecidable.

. .

Proof (continued).

Case 2: $\Omega \notin \mathcal{S}$

Analogous to Case 1 but this time choose $q \in S$.

The corresponding function f then reduces H_0 to C(S).

Thus, it also follows in this case that C(S) is undecidable.

Rice's Theorem: Consequences

Was it worth it?

We can now conclude immediately that (for example) the following informally specified problems are all undecidable:

- Does a given TM compute a constant function?
- Does a given TM compute a total function (i. e. will it always terminate, and in particular terminate in a "correct" configuration)?
- Is the output of a given TM always longer than its input?
- Does a given TM compute the identity function?
- Does a given TM compute the computable function f?
- **.** . . .

Does a given TM compute a constant function?

```
S = \{f \mid f \text{ is total and computable and} for all x, y in the domain of f : f(x) = f(y)\}
```

Does a given TM compute a constant function?

```
S = \{f \mid f \text{ is total and computable and} for all x, y in the domain of f : f(x) = f(y)\}
```

■ Does a given TM compute a total function? $S = \{f \mid f \text{ is total and computable}\}$

- Does a given TM compute a constant function?
 - $S = \{f \mid f \text{ is total and computable and}$ for all x, y in the domain of $f : f(x) = f(y)\}$
- Does a given TM compute a total function? $S = \{f \mid f \text{ is total and computable}\}$
- Does a given TM compute the identity function? $S = \{f \mid f(x) = x \text{ for all } x\}$

- Does a given TM compute a constant function?
 - $S = \{f \mid f \text{ is total and computable and}$ for all x, y in the domain of $f : f(x) = f(y)\}$
- Does a given TM compute a total function? $S = \{f \mid f \text{ is total and computable}\}$
- Does a given TM compute the identity function? $S = \{f \mid f(x) = x \text{ for all } x\}$
- Does a given TM add two natural numbers?

$$S = \{f : \mathbb{N}_0^2 \to \mathbb{N}_0 \mid f(x, y) = x + y\}$$

- Does a given TM compute a constant function?
 - $S = \{f \mid f \text{ is total and computable and}$ for all x, y in the domain of $f : f(x) = f(y)\}$
- Does a given TM compute a total function? $S = \{f \mid f \text{ is total and computable}\}$
- Does a given TM compute the identity function? $S = \{f \mid f(x) = x \text{ for all } x\}$
- Does a given TM add two natural numbers? $S = \{f : \mathbb{N}_0^2 \to \mathbb{N}_0 \mid f(x, y) = x + y\}$
- Does a given TM compute the computable function f? $S = \{f\}$ (full automization of software verification is impossible)

Exercise

This was an exam question in 2019.

Is the following informally described problem decidable? Give a brief justification.

Given a deterministic Turing machine M, is the language recognized by M regular?

Rice's Theorem: Pitfalls

■ $S = \{f \mid f \text{ can be computed by a DTM}$ with an even number of states $\}$ Rice's theorem not applicable because $S = \mathcal{R}$

Rice's Theorem: Pitfalls

- $S = \{f \mid f \text{ can be computed by a DTM}$ with an even number of states $\}$ Rice's theorem not applicable because S = R
- $S = \{f : \{0,1\}^* \to_p \{0,1\} \mid f(w) = 1 \text{ iff}$ $M_w \text{ does not terminate on } \epsilon\}?$ Rice's theorem not applicable because $S \not\subseteq \mathcal{R}$

Rice's Theorem: Pitfalls

- $S = \{f \mid f \text{ can be computed by a DTM}$ with an even number of states $\}$ Rice's theorem not applicable because $S = \mathcal{R}$
- $S = \{f : \{0,1\}^* \to_p \{0,1\} \mid f(w) = 1 \text{ iff}$ $M_w \text{ does not terminate on } \epsilon\}?$ Rice's theorem not applicable because $S \not\subseteq \mathcal{R}$

Show that $\{w \mid M_w \text{ traverses all states on every input}\}$

is undecidable. Rice's theorem not directly applicable because not a semantic property (the function computed by M_w can also be computed by a TM that does not traverse all states)

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:

- automated debugging:
 - Can a given variable ever receive a null value?
 - Can a given assertion in a program ever trigger?
 - Can a given buffer ever overflow?
- virus scanners and other software security analysis:
 - Can this code do something harmful?
 - Is this program vulnerable to SQL injections?
 - Can this program lead to a privilege escalation?
- optimizing compilers:
 - Is this dead code?
 - Is this a constant expression?
 - Can pointer aliasing happen here?
 - Is it safe to parallelize this code path?
- parallel program analysis:
 - Is a deadlock possible here?
 - Can a race condition happen here?

Questions

Questions?

Further Undecidable Problems

And What Else?

- Here we conclude our discussion of undecidable problems.
- Many more undecidable problems exist.
- In this section, we briefly discuss some further classical results.

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- ... is $|\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty$?
- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- ... is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- \blacksquare ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G, \ldots

- \blacksquare ... is $\mathcal{L}(G) = \emptyset$?
- ... is $|\mathcal{L}(G)| = \infty$?
- → all undecidable by reduction from PCP (see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using

- constant symbols 0 and 1,
- function symbols + and ·, and
- equality (=) as the only relation symbols.

It is called true if it is true under the usual interpretation of 0, 1, + and \cdot over \mathbb{N}_0 .

Beispiel:
$$\forall x \exists y \forall z (((x \cdot y) = z) \land ((1 + x) = (x \cdot y)))$$

Gödel's First Incompleteness Theorem (2)

Gödel's First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

Questions

Questions?

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

- statements on the computed function of a TM/an algorithm
- other problems

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

- statements on the computed function of a TM/an algorithm
 - → easiest with Rice' theorem
- other problems

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

- statements on the computed function of a TM/an algorithm
 - → easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
 - \rightarrow usually quite complicated

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

- statements on the computed function of a TM/an algorithm
 - → easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
 - \rightarrow usually quite complicated
 - reduction from an undecidable problem, e.g.
 - \rightarrow halting problem (H)
 - \rightarrow Post correspondence problem (PCP)

What's Next?

contents of this course:

- A. background √▷ mathematical foundations and proof techniques
- B. automata theory and formal languages √b What is a computation?
- C. Turing computability▷ What can be computed at all?
- D. complexity theory▷ What can be computed efficiently?
- E. more computability theory

 ▷ Other models of computability

What's Next?

contents of this course:

- A. background √▷ mathematical foundations and proof techniques
- B. automata theory and formal languages √b What is a computation?
- C. Turing computability √b What can be computed at all?
- D. complexity theory▷ What can be computed efficiently?
- E. more computability theory▷ Other models of computability

Quiz

kahoot.it