

Theory of Computer Science

C6. Rice's Theorem

Rice's Theorem

5 / 22

Rice's Theorem

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable partial functions. Let \mathcal{S} be an arbitrary subset of \mathcal{R} except $\mathcal{S} = \emptyset$ or $\mathcal{S} = \mathcal{R}$. Then the language

 $C(S) = \{w \in \{0, 1\}^* \mid the (partial) function computed by M_w \\ is in S\}$

is undecidable.

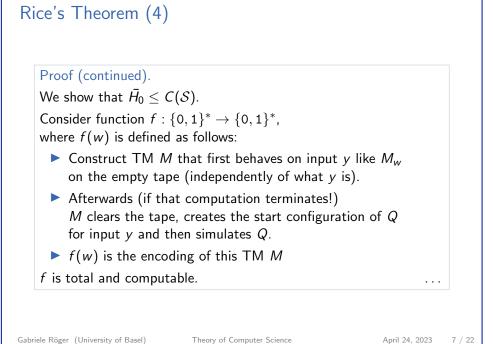
Question: why the restriction to $S \neq \emptyset$ and $S \neq R$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is Turing-recognizable. (But there are sets S for which one of the two languages is Turing-recognizable.)

Gabriele Röger (University of Basel)

Theory of Computer Science April 24, 2023

C6. Rice's Theorem



C6. Rice's Theorem

Rice's Theorem (3)

Proof.

Let $\boldsymbol{\Omega}$ be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus S$ be an arbitrary computable partial function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$).

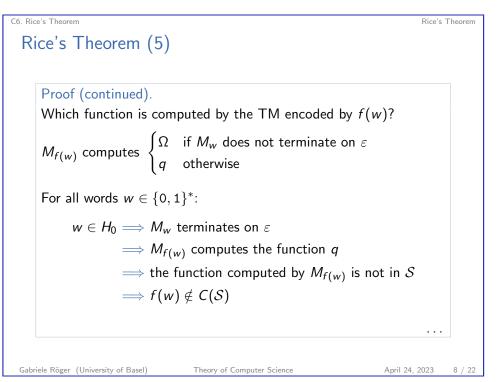
Theory of Computer Science

Let Q be a Turing machine that computes q.

Gabriele Röger (University of Basel)

April 24, 2023 6 / 22

. . .



Rice's Theorem

9 / 22

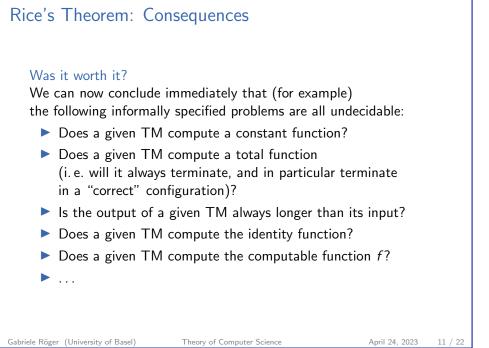
Rice's Theorem

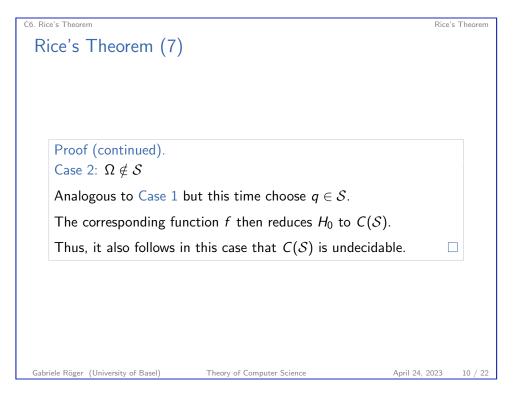
Rice's Theorem (6)

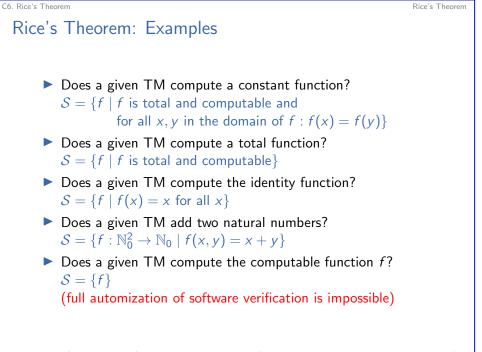
Proof (continued). Further:

 $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε $\implies M_{f(w)}$ computes the function Ω \implies the function computed by $M_{f(w)}$ is in S $\implies f(w) \in C(\mathcal{S})$ Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H}_0$ iff $f(w) \in C(S)$. Therefore, f is a reduction of \overline{H}_0 to C(S). Since H_0 is undecidable, \overline{H}_0 is also undecidable. We can conclude that C(S) is undecidable. . . . Gabriele Röger (University of Basel) Theory of Computer Science April 24, 2023

C6. Rice's Theorem

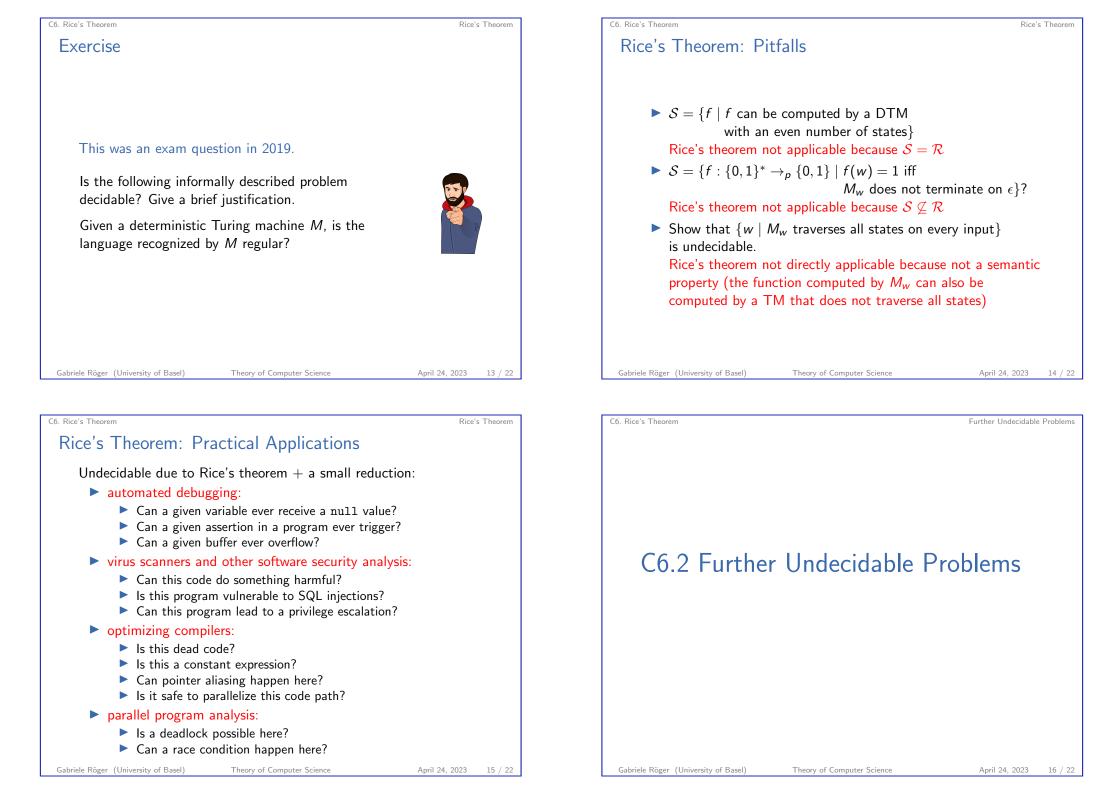


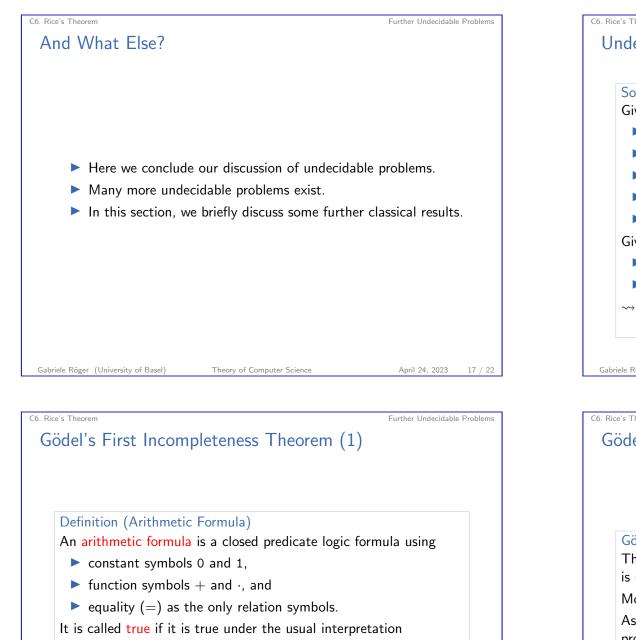




Gabriele Röger (University of Basel)

Theory of Computer Science





of 0, 1, + and \cdot over \mathbb{N}_0 .

Beispiel: $\forall x \exists y \forall z (((x \cdot y) = z) \land ((1 + x) = (x \cdot y)))$

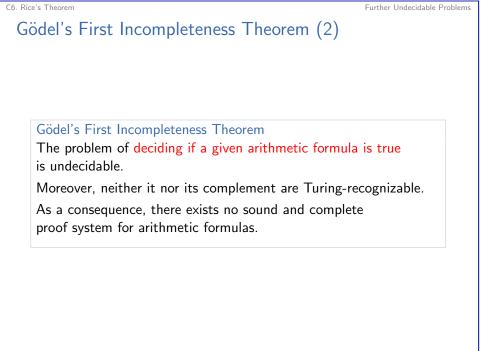
Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$? $\blacktriangleright \dots \text{ is } |\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty?$
- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- $\blacktriangleright \dots \text{ is } \mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)?$ \blacktriangleright ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?
- Given a context-sensitive grammar G, \ldots
- \blacktriangleright ... is $\mathcal{L}(G) = \emptyset$?
- ▶ ... is $|\mathcal{L}(G)| = \infty$?
- \rightsquigarrow all undecidable by reduction from PCP (see Schöning, Chapter 2.8)
- Gabriele Röger (University of Basel)

April 24, 2023 18 / 22



Theory of Computer Science

Theory of Computer Science

C6. Rice's Theorem

Summary

21 / 22

Summary

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

 \blacktriangleright statements on the computed function of a TM/an algorithm \rightarrow easiest with Rice' theorem

Theory of Computer Science

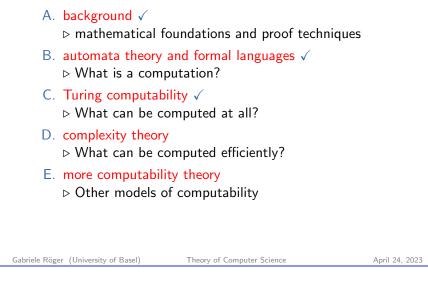
- other problems
 - \blacktriangleright directly with the definition of undecidability
 - \rightarrow usually quite complicated
 - reduction from an undecidable problem, e.g.
 - \rightarrow halting problem (H)
 - \rightarrow Post correspondence problem (PCP)

April 24, 2023

C6. Rice's Theorem

What's Next?

contents of this course:



22 / 22