

Theory of Computer Science

C6. Rice's Theorem

Gabriele Röger

University of Basel

April 24, 2023

Theory of Computer Science

April 24, 2023 — C6. Rice's Theorem

C6.1 Rice's Theorem

C6.2 Further Undecidable Problems

C6.1 Rice's Theorem

Rice's Theorem (1)

- ▶ We have shown that the following problems are undecidable:
 - ▶ halting problem H
 - ▶ halting problem on empty tape H_0
 - ▶ post correspondence problem PCP
- ▶ Many more results of this type could be shown.
- ▶ Instead, we prove a much more general result, **Rice's theorem**, which shows that a very large class of different problems are undecidable.
- ▶ Rice's theorem can be summarized informally as: **every** non-trivial question about **what** a given Turing machine computes is undecidable.

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable partial functions.

Let \mathcal{S} be an **arbitrary** subset of \mathcal{R} except $\mathcal{S} = \emptyset$ or $\mathcal{S} = \mathcal{R}$.

Then the language

$$C(\mathcal{S}) = \{w \in \{0, 1\}^* \mid \text{the (partial) function computed by } M_w \text{ is in } \mathcal{S}\}$$

is undecidable.

Question: why the restriction to $\mathcal{S} \neq \emptyset$ and $\mathcal{S} \neq \mathcal{R}$?

Extension (without proof): in most cases neither $C(\mathcal{S})$ nor $\overline{C(\mathcal{S})}$ is Turing-recognizable. (But there are sets \mathcal{S} for which one of the two languages is Turing-recognizable.)

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Let Q be a Turing machine that computes q .

...

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(\mathcal{S})$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$,
where $f(w)$ is defined as follows:

- ▶ Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- ▶ Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q .
- ▶ $f(w)$ is the encoding of this TM M

f is total and computable.

...

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by $f(w)$?

$M_{f(w)}$ computes $\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

$w \in H_0 \implies M_w \text{ terminates on } \varepsilon$

$\implies M_{f(w)}$ computes the function q

\implies the function computed by $M_{f(w)}$ is not in \mathcal{S}

$\implies f(w) \notin C(\mathcal{S})$

...

Rice's Theorem (6)

Proof (continued).

Further:

- $w \notin H_0 \implies M_w \text{ does not terminate on } \varepsilon$
- $\implies M_{f(w)} \text{ computes the function } \Omega$
- $\implies \text{the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$
- $\implies f(w) \in C(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(\mathcal{S})$,
thus $w \in \bar{H}_0$ iff $f(w) \in C(\mathcal{S})$.

Therefore, f is a reduction of \bar{H}_0 to $C(\mathcal{S})$.

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

We can conclude that $C(\mathcal{S})$ is undecidable.

...

Rice's Theorem (7)

Proof (continued).

Case 2: $\Omega \notin \mathcal{S}$

Analogous to Case 1 but this time choose $q \in \mathcal{S}$.

The corresponding function f then reduces H_0 to $C(\mathcal{S})$.

Thus, it also follows in this case that $C(\mathcal{S})$ is undecidable. □

Rice's Theorem: Consequences

Was it worth it?

We can now conclude immediately that (for example) the following informally specified problems are all undecidable:

- ▶ Does a given TM compute a constant function?
- ▶ Does a given TM compute a total function
(i.e. will it always terminate, and in particular terminate in a “correct” configuration)?
- ▶ Is the output of a given TM always longer than its input?
- ▶ Does a given TM compute the identity function?
- ▶ Does a given TM compute the computable function f ?
- ▶ ...

Rice's Theorem: Examples

- ▶ Does a given TM compute a constant function?

$\mathcal{S} = \{f \mid f \text{ is total and computable and}$
 $\text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

- ▶ Does a given TM compute a total function?

$\mathcal{S} = \{f \mid f \text{ is total and computable}\}$

- ▶ Does a given TM compute the identity function?

$\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$

- ▶ Does a given TM add two natural numbers?

$\mathcal{S} = \{f : \mathbb{N}_0^2 \rightarrow \mathbb{N}_0 \mid f(x, y) = x + y\}$

- ▶ Does a given TM compute the computable function f ?

$\mathcal{S} = \{f\}$

(full automation of software verification is impossible)

Exercise

This was an exam question in 2019.

Is the following informally described problem decidable? Give a brief justification.

Given a deterministic Turing machine M , is the language recognized by M regular?

Rice's Theorem: Pitfalls

- ▶ $\mathcal{S} = \{f \mid f \text{ can be computed by a DTM with an even number of states}\}$
Rice's theorem not applicable because $\mathcal{S} = \mathcal{R}$
- ▶ $\mathcal{S} = \{f : \{0, 1\}^* \rightarrow_p \{0, 1\} \mid f(w) = 1 \text{ iff } M_w \text{ does not terminate on } \epsilon\}$?
Rice's theorem not applicable because $\mathcal{S} \not\subseteq \mathcal{R}$
- ▶ Show that $\{w \mid M_w \text{ traverses all states on every input}\}$ is undecidable.
Rice's theorem not directly applicable because not a semantic property (the function computed by M_w can also be computed by a TM that does not traverse all states)

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:

- ▶ **automated debugging:**
 - ▶ Can a given variable ever receive a `null` value?
 - ▶ Can a given assertion in a program ever trigger?
 - ▶ Can a given buffer ever overflow?
- ▶ **virus scanners and other software security analysis:**
 - ▶ Can this code do something harmful?
 - ▶ Is this program vulnerable to SQL injections?
 - ▶ Can this program lead to a privilege escalation?
- ▶ **optimizing compilers:**
 - ▶ Is this dead code?
 - ▶ Is this a constant expression?
 - ▶ Can pointer aliasing happen here?
 - ▶ Is it safe to parallelize this code path?
- ▶ **parallel program analysis:**
 - ▶ Is a deadlock possible here?
 - ▶ Can a race condition happen here?

C6.2 Further Undecidable Problems

And What Else?

- ▶ Here we conclude our discussion of undecidable problems.
- ▶ Many more undecidable problems exist.
- ▶ In this section, we briefly discuss some further classical results.

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- ▶ ... is $|\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty$?
- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- ▶ ... is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- ▶ ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G , ...

- ▶ ... is $\mathcal{L}(G) = \emptyset$?
- ▶ ... is $|\mathcal{L}(G)| = \infty$?

↔ all undecidable by reduction from PCP
(see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An **arithmetic formula** is a closed predicate logic formula using

- ▶ constant symbols 0 and 1,
- ▶ function symbols $+$ and \cdot , and
- ▶ equality ($=$) as the only relation symbols.

It is called **true** if it is true under the usual interpretation of 0, 1, $+$ and \cdot over \mathbb{N}_0 .

Beispiel: $\forall x \exists y \forall z (((x \cdot y) = z) \wedge ((1 + x) = (x \cdot y)))$

Gödel's First Incompleteness Theorem (2)

Gödel's First Incompleteness Theorem

The problem of **deciding if a given arithmetic formula is true** is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

Summary

Rice's theorem:

- ▶ “In general one cannot determine algorithmically what a given program (or Turing machine) computes.”

How to Prove Undecidability?

- ▶ statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- ▶ other problems
 - ▶ directly with the definition of undecidability
→ usually quite complicated
 - ▶ reduction from an undecidable problem, e.g.
→ halting problem (H)
→ Post correspondence problem (PCP)

What's Next?

contents of this course:

- A. background ✓
 - ▷ mathematical foundations and proof techniques
- B. automata theory and formal languages ✓
 - ▷ What is a computation?
- C. Turing computability ✓
 - ▷ What can be computed at all?
- D. complexity theory
 - ▷ What can be computed efficiently?
- E. more computability theory
 - ▷ Other models of computability