Theory of Computer Science C4. Reductions

Gabriele Röger

University of Basel

April 19, 2023

Reduction 0000000 Halting Problem on Empty Tape

Introduction

What We Achieved So Far: Discussion

- We already know a concrete undecidable problem. \rightarrow halting problem
- We will see that we can derive further undecidability results from the undecidability of the halting problem.
- The central notion for this is reducing one problem to another problem.

Illustration

```
def is_odd(some_number):
 n = some_number + 1
 return is_even(n)
```

- Decides whether a given number is odd based on...
- an algorithm that determines whether a number is even.

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A relying on a hypothetical algorithm for problem B.

```
def is_in_A(input_A):
 input_B = <compute suitable instance based on input_A>
 return is_in_B(input_B)
```

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A relying on a hypothetical algorithm for problem B.

```
def is_in_A(input_A):
 input_B = <compute suitable instance based on input_A>
 return is_in_B(input_B)
```

What (if anything) can you conclude

- If there indeed is an algorithm for problem A?
- If there indeed is an algorithm for problem B?
- if problem A is undecidable?
- If problem B is undecidable?

Introduction

Reduction 0000000 Halting Problem on Empty Tape

Summary 00

Questions

Questions?

Reduction •000000

Halting Problem on Empty Tape

Reduction

Reduction: Definition

Definition (Reduction)

Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages, and let $f : \Sigma^* \to \Gamma^*$ be a total and computable function such that for all $x \in \Sigma^*$:

$x \in A$ if and only if $f(x) \in B$.

Then we say that A can be reduced to B (in symbols: $A \le B$), and f is called a reduction from A to B.

Reduction Property

Theorem (Reductions vs. Turing-recognizability/Decidability)

Let A and B be languages with $A \leq B$. Then:

- If B is decidable, then A is decidable.
- **2** If B is Turing-recognizable, then A is Turing-recognizable.
- If A is not decidable, then B is not decidable.
- If A is not Turing-recognizable, then B is not Turing-recognizable.

 √→ In the following, we use 3. to show undecidability for further problems.

Reduction Property: Proof

Proof.

for 1.: If B is decidable then there is a DTM M_B that decides B. The following algorithm decides A using reduction f from A to B.

On input *x*:

- y := f(x)
- **2** Simulate M_B on input y. This simulation terminates.
- If M_B accepted y, accept. Otherwise reject.

Reduction Property: Proof

Proof.

for 1.: If *B* is decidable then there is a DTM M_B that decides *B*. The following algorithm decides *A* using reduction *f* from *A* to *B*. On input *x*:

 $\mathbf{0} \quad \mathbf{y} := f(\mathbf{x})$

2 Simulate M_B on input y. This simulation terminates.

If M_B accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that M_B only recognizes B and therefore the simulation does not necessarily terminate if $y \notin B$. Since $y \notin B$ iff $x \notin A$, the procedure still recognizes A.

Reduction Property: Proof

Proof.

for 1.: If *B* is decidable then there is a DTM M_B that decides *B*. The following algorithm decides *A* using reduction *f* from *A* to *B*. On input *x*:

- y := f(x)
- **2** Simulate M_B on input y. This simulation terminates.
- If M_B accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that M_B only recognizes B and therefore the simulation does not necessarily terminate if $y \notin B$. Since $y \notin B$ iff $x \notin A$, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. \rightsquigarrow logically equivalent

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation " \leq " is a preorder:

- I For all languages A: A ≤ A (reflexivity)
- Por all languages A, B, C: If A ≤ B and B ≤ C, then A ≤ C (transitivity)

Reductions are Preorders: Proof

Proof.

for 1.: The function f(x) = x is a reduction from A to A because it is total and computable and $x \in A$ iff $f(x) \in A$.

for 2.: \rightsquigarrow exercises

Introduction 00000 Reduction 000000

Halting Problem on Empty Tape

Summary 00

Questions

Questions?

Introduction 00000 Reduction 0000000 Halting Problem on Empty Tape

Summary 00

Example

As an example

- we will consider problem H_0 , a variant of the halting problem,
- ... and show that it is undecidable
- ... reducing H to H_0 .

Reduction 0000000 Halting Problem on Empty Tape 000000

Summary 00

Reminder: Halting Problem

Definition (Halting Problem)

The halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

 M_w started on x terminates}

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

 $H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

 $H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$

Note: H_0 is Turing-recognizable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.

Halting Problem on Empty Tape (2)

Proof.

We show $H \leq H_0$.

Proof.

We show $H \leq H_0$.

Consider the function $f : \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H₀
 (e.g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.

. . .

Halting Problem on Empty Tape (2)

Proof.

We show $H \leq H_0$.

Consider the function $f : \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H₀
 (e.g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.
- Decode w to a TM M_2 .

Proof (continued).

- Construct a TM *M*₁ that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 - otherwise, stop immediately

Proof (continued).

- Construct a TM *M*₁ that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
 - \rightarrow *M* started on empty tape simulates *M*₂ on input *x*.

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
 - \rightarrow *M* started on empty tape simulates *M*₂ on input *x*.
- Return the encoding of *M*.

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
 - \rightarrow *M* started on empty tape simulates *M*₂ on input *x*.
- Return the encoding of *M*.
- f is total and (with some effort) computable. Also:

 $z \in H$ iff z = w#x and M_w run on x terminates iff $M_{f(z)}$ started on empty tape terminates iff $f(z) \in H_0$

 \rightsquigarrow $H \leq H_0 \rightsquigarrow H_0$ undecidable

Introduction 00000 Reduction 0000000 Halting Problem on Empty Tape

Summary 00

Questions

Questions?

Reduction 0000000 Halting Problem on Empty Tape 0000000

Summary

Introduction 00000

Summary

- reductions: "embedding" a problem as a special case of another problem
- important method for proving undecidability: reduce from a known undecidable problem to a new problem