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C4. Reductions Introduction

C4.1 Introduction
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C4. Reductions Introduction

What We Achieved So Far: Discussion

▶ We already know a concrete undecidable problem.
→ halting problem

▶ We will see that we can derive further
undecidability results from the undecidability
of the halting problem.

▶ The central notion for this is reducing
one problem to another problem.
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C4. Reductions Introduction

Illustration

def is_odd(some_number):

n = some_number + 1

return is_even(n)

▶ Decides whether a given number is odd based on. . .

▶ an algorithm that determines whether a number is even.
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C4. Reductions Introduction

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):

input_B = <compute suitable instance based on input_A>

return is_in_B(input_B)

What (if anything) can you conclude

1 if there indeed is an algorithm for problem A?

2 if there indeed is an algorithm for problem B?

3 if problem A is undecidable?

4 if problem B is undecidable?
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C4. Reductions Reduction

C4.2 Reduction
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C4. Reductions Reduction

Reduction: Definition

Definition (Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be languages, and let f : Σ∗ → Γ∗

be a total and computable function such that for all x ∈ Σ∗:

x ∈ A if and only if f (x) ∈ B.

Then we say that A can be reduced to B (in symbols: A ≤ B),
and f is called a reduction from A to B.
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C4. Reductions Reduction

Reduction Property

Theorem (Reductions vs. Turing-recognizability/Decidability)

Let A and B be languages with A ≤ B. Then:

1 If B is decidable, then A is decidable.

2 If B is Turing-recognizable, then A is Turing-recognizable.

3 If A is not decidable, then B is not decidable.

4 If A is not Turing-recognizable, then B is not
Turing-recognizable.

⇝ In the following, we use 3. to show undecidability

⇝

for further problems.
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C4. Reductions Reduction

Reduction Property: Proof

Proof.
for 1.: If B is decidable then there is a DTM MB that decides B.
The following algorithm decides A using reduction f from A to B.

On input x :

1 y := f (x)

2 Simulate MB on input y . This simulation terminates.

3 If MB accepted y , accept. Otherwise reject.

for 2.: identical to (1), only that MB only recognizes B and
therefore the simulation does not necessarily terminate if y ̸∈ B.
Since y ̸∈ B iff x ̸∈ A, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. ⇝ logically equivalent
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C4. Reductions Reduction

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “≤” is a preorder:

1 For all languages A:
A ≤ A (reflexivity)

2 For all languages A, B, C:
If A ≤ B and B ≤ C, then A ≤ C (transitivity)
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C4. Reductions Reduction

Reductions are Preorders: Proof

Proof.

for 1.: The function f (x) = x is a reduction from A to A
because it is total and computable and x ∈ A iff f (x) ∈ A.

for 2.: ⇝ exercises
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C4. Reductions Halting Problem on Empty Tape

C4.3 Halting Problem on Empty
Tape
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C4. Reductions Halting Problem on Empty Tape

Example

As an example

▶ we will consider problem H0, a variant of the halting problem,

▶ . . . and show that it is undecidable

▶ . . . reducing H to H0.

Gabriele Röger (University of Basel) Theory of Computer Science April 19, 2023 14 / 20



C4. Reductions Halting Problem on Empty Tape

Reminder: Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

H0 = {w ∈ {0, 1}∗ | Mw started on ε terminates}.

Note: H0 is Turing-recognizable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (2)

Proof.
We show H ≤ H0.

Consider the function f : {0, 1, #}∗ → {0, 1}∗
that computes the word f (z) for a given z ∈ {0, 1, #}∗ as follows:

▶ Test if z has the form w#x with w , x ∈ {0, 1}∗.
▶ If not, return any word that is not in H0

(e. g., encoding of a TM that instantly starts an endless loop).

▶ If yes, split z into w and x .

▶ Decode w to a TM M2.

. . .
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (3)

Proof (continued).
▶ Construct a TM M1 that behaves as follows:

▶ If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x ̸= ε); then stop

▶ otherwise, stop immediately

▶ Construct TM M that first runs M1 and then M2.
→ M started on empty tape simulates M2 on input x .

▶ Return the encoding of M.

f is total and (with some effort) computable. Also:

z ∈ H iff z = w#x and Mw run on x terminates

iff Mf (z) started on empty tape terminates

iff f (z) ∈ H0

⇝ H ≤ H0 ⇝ H0 undecidable
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C4. Reductions Summary

C4.4 Summary
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C4. Reductions Summary

Summary

▶ reductions: “embedding” a problem as a special case
of another problem

▶ important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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