Theory of Computer Science C4. Reductions

Gabriele Röger

University of Basel

April 19, 2023

Theory of Computer Science April 19, 2023 — C4. Reductions

C4.1 Introduction

C4.2 Reduction

C4.3 Halting Problem on Empty Tape

C4.4 Summary

C4.1 Introduction

What We Achieved So Far: Discussion

- We already know a concrete undecidable problem.
 - → halting problem
- We will see that we can derive further undecidability results from the undecidability of the halting problem.
- ► The central notion for this is reducing one problem to another problem.

Illustration

```
def is_odd(some_number):
    n = some_number + 1
    return is_even(n)
```

- Decides whether a given number is odd based on...
- ▶ an algorithm that determines whether a number is even.

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A relying on a hypothetical algorithm for problem B.

```
def is_in_A(input_A):
  input_B = <compute suitable instance based on input_A>
  return is_in_B(input_B)
```

What (if anything) can you conclude

- if there indeed is an algorithm for problem A?
- if there indeed is an algorithm for problem B?
- if problem A is undecidable?
- if problem B is undecidable?

C4.2 Reduction

Reduction: Definition

Definition (Reduction)

Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages, and let $f: \Sigma^* \to \Gamma^*$ be a total and computable function such that for all $x \in \Sigma^*$:

$$x \in A$$
 if and only if $f(x) \in B$.

Then we say that A can be reduced to B (in symbols: $A \leq B$), and f is called a reduction from A to B.

Reduction Property

Theorem (Reductions vs. Turing-recognizability/Decidability)

Let A and B be languages with $A \leq B$. Then:

- If B is decidable, then A is decidable.
- ② If B is Turing-recognizable, then A is Turing-recognizable.
- **1** If A is not decidable, then B is not decidable.
- If A is not Turing-recognizable, then B is not Turing-recognizable.
- → In the following, we use 3. to show undecidability
 for further problems.

Reduction Property: Proof

Proof.

for 1.: If B is decidable then there is a DTM M_B that decides B. The following algorithm decides A using reduction f from A to B.

On input *x*:

- ② Simulate M_B on input y. This simulation terminates.
- **3** If M_B accepted y, accept. Otherwise reject.

for 2.: identical to (1), only that M_B only recognizes B and therefore the simulation does not necessarily terminate if $y \notin B$. Since $y \notin B$ iff $x \notin A$, the procedure still recognizes A.

for 3./4.: contrapositions of $1./2. \rightsquigarrow$ logically equivalent

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation " \leq " is a preorder:

- For all languages A:
 A < A (reflexivity)</p>
- $A \leq A$ (reflexivity)
- **2** For all languages A, B, C: If $A \le B$ and $B \le C$, then $A \le C$ (transitivity)

Reductions are Preorders: Proof

Proof.

for 1.: The function f(x) = x is a reduction from A to A because it is total and computable and $x \in A$ iff $f(x) \in A$.

for 2.:
→ exercises

C4.3 Halting Problem on Empty Tape

Example

As an example

- \blacktriangleright we will consider problem H_0 , a variant of the halting problem,
- ...and show that it is undecidable
- ightharpoonup ... reducing H to H_0 .

Reminder: Halting Problem

Definition (Halting Problem)

The halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

$$M_w \text{ started on } x \text{ terminates}\}$$

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

$$H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$$

Note: H_0 is Turing-recognizable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.

Halting Problem on Empty Tape (2)

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0,1,\#\}^* \to \{0,1\}^*$ that computes the word f(z) for a given $z \in \{0,1,\#\}^*$ as follows:

- ► Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H₀
 (e. g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.
- ightharpoonup Decode w to a TM M_2 .

. . .

Halting Problem on Empty Tape (3)

Proof (continued).

- ightharpoonup Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately
- ▶ Construct TM M that first runs M_1 and then M_2 .
 - $\rightarrow M$ started on empty tape simulates M_2 on input x.
- Return the encoding of *M*.

f is total and (with some effort) computable. Also:

$$z \in H$$
 iff $z = w \# x$ and M_w run on x terminates iff $M_{f(z)}$ started on empty tape terminates iff $f(z) \in H_0$

 $\rightsquigarrow H \leq H_0 \rightsquigarrow H_0$ undecidable

C4. Reductions Summary

C4.4 Summary

C4. Reductions Summary

Summary

- reductions: "embedding" a problem as a special case of another problem
- important method for proving undecidability: reduce from a known undecidable problem to a new problem