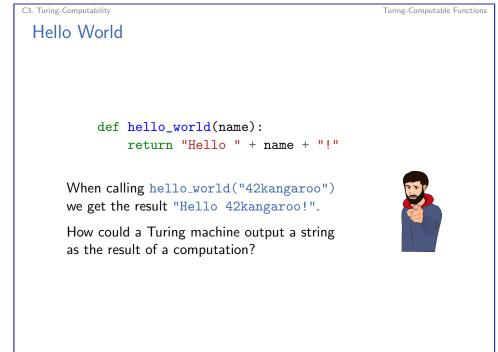


C3. Turing-Computability

Turing-Computable Functions

C3.1 Turing-Computable Functions

Theory of Computer Science April 17, 2023 — C3. Turing-Computability		
C3.1 Turing-Computable Functions		
C3.2 Decidability vs. Computability		
C3.3 Summary		
Gabriele Röger (University of Basel) Theory of Computer Science	April 17, 2023	2 / 25



C3. Turing-Computability

Turing-Computable Functions

Church-Turing Thesis Revisited

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).
- \blacktriangleright \Rightarrow consider the tape content when the TM accepted.

Theory of Computer Science

Gabriele Röger (University of Basel)

April 17, 2023

C3. Turing-Computability

Turing-Computable Functions

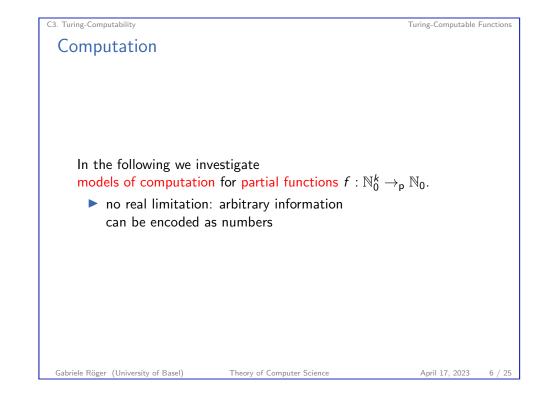
5 / 25

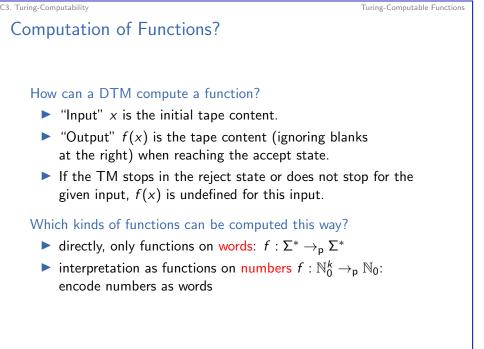
Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- ▶ configuration: $\langle \alpha, q, \beta \rangle$ with $\alpha \in \Gamma^*$, $q \in Q$, $\beta \in \Gamma^+$
- one computation step: c ⊢ c' if one computation step can turn configuration c into configuration c'
- multiple computation steps: c ⊢* c' if 0 or more computation steps can turn configuration c into configuration c' (c = c₀ ⊢ c₁ ⊢ c₂ ⊢ ··· ⊢ c_{n-1} ⊢ c_n = c', n ≥ 0)

(Definition of \vdash , i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter B10)





Gabriele Röger (University of Basel)

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine) A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ computes the (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ for which for all $x, y \in \Sigma^*$:

 $f(x) = y \text{ iff } \langle \varepsilon, q_0, x \rangle \vdash^* \langle \varepsilon, q_{\text{accept}}, y \Box \dots \Box \rangle.$

(special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

- ▶ What happens if the computation does not reach *q*_{accept}?
- What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in *y*?
- What happens if the read-write head is not at the first tape cell when accepting?
- Is f uniquely defined by this definition? Why?

```
Gabriele Röger (University of Basel)
```

Theory of Computer Science April 17, 2023

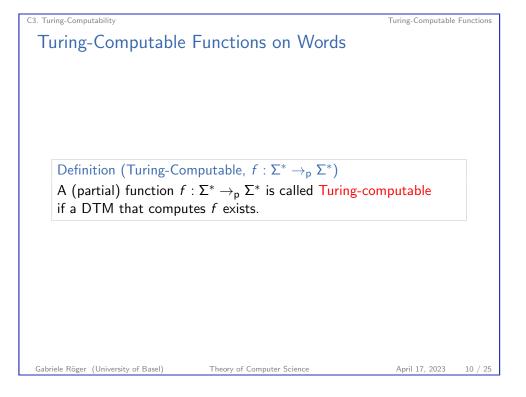
C3. Turing-Computability

Turing-Computable Functions

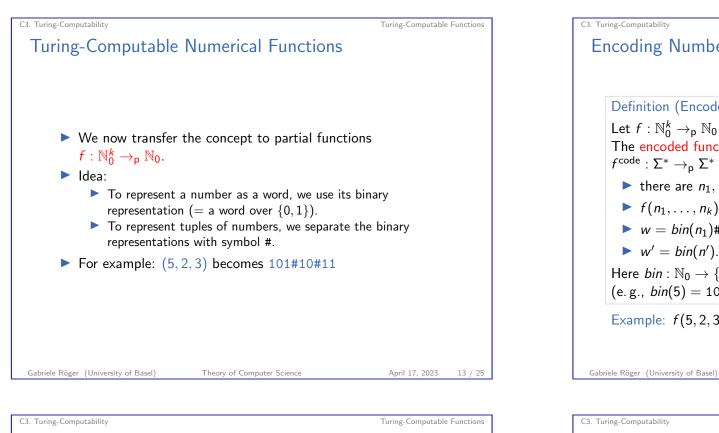
9 / 25

Example: Turing-Computable Functions on Words

Example Let $\Sigma = \{a, b, \#\}$. The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with f(w) = w # w for all $w \in \Sigma^*$ is Turing-computable. Idea: \rightsquigarrow blackboard







Turing-Computable Numerical Functions Exercise Definition (Turing-Computable, $f : \mathbb{N}_0^k \to_{\mathsf{p}} \mathbb{N}_0$) A (partial) function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called Turing-computable if a DTM that computes f^{code} exists. Theory of Computer Science April 17, 2023 15 / 25

Encoding Numbers as Words

Definition (Encoded Function) Let $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ be a (partial) function. The encoded function f^{code} of f is the partial function $f^{\text{code}}: \Sigma^* \to_p \Sigma^* \text{ with } \Sigma = \{0, 1, \#\} \text{ and } f^{\text{code}}(w) = w' \text{ iff}$ ▶ there are $n_1, \ldots, n_k, n' \in \mathbb{N}_0$ such that $\blacktriangleright f(n_1,\ldots,n_k) = n'.$ \blacktriangleright w = bin(n₁)#...#bin(n_k) and Here $bin : \mathbb{N}_0 \to \{0, 1\}^*$ is the binary encoding (e.g., bin(5) = 101).Example: f(5,2,3) = 4 corresponds to $f^{code}(101\#10\#11) = 100$.

Turing-Computable Functions The addition of natural numbers $+: \mathbb{N}_0^2 \to \mathbb{N}_0$ is Turing-computable. You have a TM M that computes $+^{code}$. You want to use *M* to compute the sum 3 + 2. What is your input to M?

Theory of Computer Science

April 17, 2023

14 / 25

C3. Turing-Computability

Turing-Computable Functions

Example: Turing-Computable Numerical Function

Example The following numerical functions are Turing-computable: • succ : $\mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with succ(n) := n + 1► $pred_1 : \mathbb{N}_0 \to_p \mathbb{N}_0$ with $pred_1(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ 0 & \text{if } n = 0 \end{cases}$ ► pred₂ : $\mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with pred₂(n) := $\begin{cases} n-1 & \text{if } n \ge 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$ How does incrementing and decrementing binary numbers work? Gabriele Röger (University of Basel) Theory of Computer Science April 17, 2023 17 / 25

C3. Turing-Computability Turing-Computable Functions Predecessor Function The Turing machine for $pred_1$ works as follows: (Details of marking the first tape position ommitted) Check that the input is a valid binary number (as for succ). If the (entire) input is 0 or 1, write a 0 and accept. One of the last symbol of the input. While you read symbol 0 replace it with 1 and move left. Seplace the 1 with a 0. **6** If you are on the first tape cell, eliminate the trailing 0 (moving all other non-blank symbols one position to the left). Ø Move the head to the first position and accept. What do you have to change to get a TM for $pred_2$? Gabriele Röger (University of Basel) Theory of Computer Science April 17, 2023 19 / 25

Successor Function The Turing machine for *succ* works as follows: (Details of marking the first tape position ommitted) Check that the input is a valid binary number: If the input is not a single symbol 0 but starts with a 0, reject. ▶ If the input contains symbol #, reject. 2 Move the head onto the last symbol of the input. • While you read a 1 and you are not at the first tape position, replace it with a 0 and move the head one step to the left. Oppending on why the loop in stage 3 terminated: If you read a 0, replace it with a 1, move the head to the left end of the tape and accept. If you read a 1 at the first tape position, move every non-blank symbol on the tape one position to the right, write a 1 in the first tape position and accept. Gabriele Röger (University of Basel) Theory of Computer Science C3. Turing-Computability More Turing-Computable Numerical Functions Example The following numerical functions are Turing-computable: ▶ add : $\mathbb{N}_0^2 \rightarrow_{\mathbf{p}} \mathbb{N}_0$ with $add(n_1, n_2) := n_1 + n_2$ • sub : $\mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with sub $(n_1, n_2) := \max\{n_1 - n_2, 0\}$ • $mul: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $mul(n_1, n_2) := n_1 \cdot n_2$ • $div: \mathbb{N}_0^2 \to_p \mathbb{N}_0$ with $div(n_1, n_2) := \begin{cases} \left\lceil \frac{n_1}{n_2} \right\rceil & \text{if } n_2 \neq 0 \\ \text{undefined} & \text{if } n_2 = 0 \end{cases}$ \rightarrow sketch?

C3. Turing-Computability

Gabriele Röger (University of Basel)

Theory of Computer Science

Turing-Computable Functions

April 17, 2023

Turing-Computable Functions

18 / 25

Decidability vs. Computability

C3.2 Decidability vs. Computability

Gabriele Röger (University of Basel)

Theory of Computer Science

C3. Turing-Computability

Decidability vs. Computability

April 17, 2023

21 / 25

Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \rightarrow_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi'_L(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
ot \in L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape and accepts. Otherwise it enters an infinite loop.

" \Leftarrow " Let *C* be a DTM that computes χ'_L . Construct a DTM *C'* that simulates *C* on the input. If *C* accepts with output 1 then *C'* accepts, otherwise it enters an infinite loop.

Decidability as Computability

Theorem

C3. Turing-Computability

A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

Proof sketch.

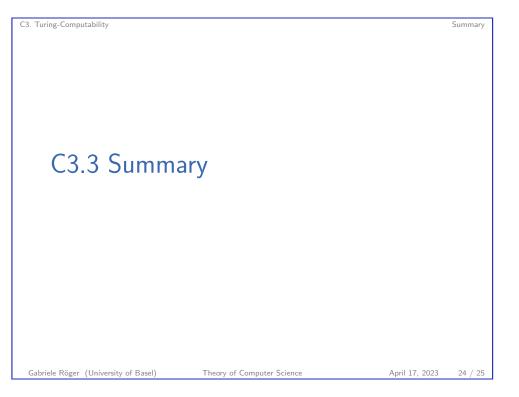
" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape. If *M* rejects, *M*' writes a 0 on the tape. Afterwards *M*' accepts. " \Leftarrow " Let *C* be a DTM that computes χ_L . Construct a DTM *C*' that simulates *C* on the input. If the output of *C* is 1 then *C*' accepts, otherwise it rejects.

Theory of Computer Science

Gabriele Röger (University of Basel)

April 17, 2023

22 / 25



C3. Turing-Computability			Summary
Summary			
there is a DTM into the output or stops in invali	e)		
	ble function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$: ncoded in binary and separa	ated by #	
Gabriele Röger (University of Basel)	Theory of Computer Science	April 17, 2023	25 / 25