Theory of Computer Science C3. Turing-Computability

Gabriele Röger

University of Basel

April 17, 2023

Gabriele Röger (University of Basel)

Theory of Computer Science

April 17, 2023 1 / 25

Theory of Computer Science April 17, 2023 — C3. Turing-Computability

C3.1 Turing-Computable Functions

C3.2 Decidability vs. Computability

C3.3 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

C3.1 Turing-Computable Functions

Hello World

```
def hello_world(name):
    return "Hello " + name + "!"
```

When calling hello_world("42kangaroo") we get the result "Hello 42kangaroo!".

How could a Turing machine output a string as the result of a computation?

C3. Turing-Computability

Church-Turing Thesis Revisited

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).
- \blacktriangleright \Rightarrow consider the tape content when the TM accepted.

Computation

In the following we investigate models of computation for partial functions $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$.

 no real limitation: arbitrary information can be encoded as numbers

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- ▶ configuration: $\langle \alpha, q, \beta \rangle$ with $\alpha \in \Gamma^*$, $q \in Q$, $\beta \in \Gamma^+$
- one computation step: $c \vdash c'$ if one computation step can turn configuration c into configuration c'
- multiple computation steps: c ⊢* c' if 0 or more computation steps can turn configuration c into configuration c' (c = c₀ ⊢ c₁ ⊢ c₂ ⊢ · · · ⊢ c_{n-1} ⊢ c_n = c', n ≥ 0)

(Definition of \vdash , i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter B10)

Computation of Functions?

How can a DTM compute a function?

- "Input" x is the initial tape content.
- "Output" f(x) is the tape content (ignoring blanks at the right) when reaching the accept state.
- If the TM stops in the reject state or does not stop for the given input, f(x) is undefined for this input.

Which kinds of functions can be computed this way?

- directly, only functions on words: $f: \Sigma^* \rightarrow_p \Sigma^*$
- ► interpretation as functions on numbers f : N^k₀ →_p N₀: encode numbers as words

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine) A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject} \rangle$ computes the (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ for which for all $x, y \in \Sigma^*$: f(x) = y iff $\langle \varepsilon, q_0, x \rangle \vdash^* \langle \varepsilon, q_{accept}, y \Box ... \Box \rangle$. (special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

- What happens if the computation does not reach q_{accept}?
- ► What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in *y*?
- What happens if the read-write head is not at the first tape cell when accepting?
- Is f uniquely defined by this definition? Why?

Turing-Computable Functions on Words

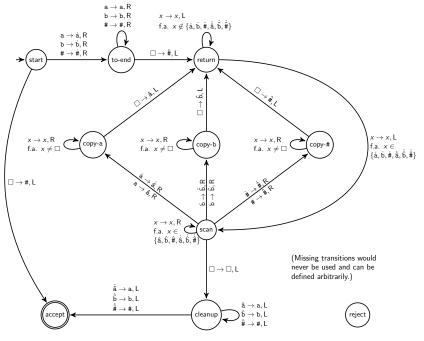
Definition (Turing-Computable, $f : \Sigma^* \rightarrow_p \Sigma^*$)

A (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ is called Turing-computable if a DTM that computes f exists.

Example: Turing-Computable Functions on Words

Example Let $\Sigma = \{a, b, \#\}$. The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with f(w) = w # w for all $w \in \Sigma^*$ is Turing-computable.

Idea: \rightsquigarrow blackboard



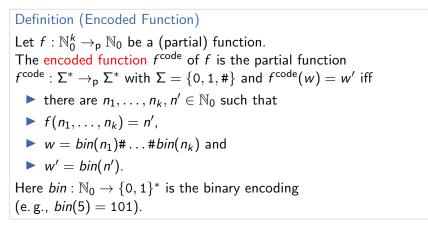
Gabriele Röger (University of Basel)

Theory of Computer Science

Turing-Computable Numerical Functions

- We now transfer the concept to partial functions f : N^k₀ →_p N₀.
- Idea:
 - To represent a number as a word, we use its binary representation (= a word over {0,1}).
 - To represent tuples of numbers, we separate the binary representations with symbol #.
- ► For example: (5, 2, 3) becomes 101#10#11

Encoding Numbers as Words



Example: f(5,2,3) = 4 corresponds to $f^{code}(101\#10\#11) = 100$.

Gabriele Röger (University of Basel)

Turing-Computable Numerical Functions

Definition (Turing-Computable, $f : \mathbb{N}_0^k \rightarrow_p \mathbb{N}_0$)

A (partial) function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called Turing-computable if a DTM that computes f^{code} exists.

The addition of natural numbers $+ : \mathbb{N}_0^2 \to \mathbb{N}_0$ is Turing-computable. You have a TM *M* that computes $+^{\text{code}}$.

You want to use M to compute the sum 3 + 2. What is your input to M?

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:

How does incrementing and decrementing binary numbers work?

Successor Function

The Turing machine for *succ* works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number:
 - If the input is not a single symbol 0 but starts with a 0, reject.
 - If the input contains symbol #, reject.
- Ø Move the head onto the last symbol of the input.
- While you read a 1 and you are not at the first tape position, replace it with a 0 and move the head one step to the left.
- Oppending on why the loop in stage 3 terminated:
 - If you read a 0, replace it with a 1, move the head to the left end of the tape and accept.
 - If you read a 1 at the first tape position, move every non-blank symbol on the tape one position to the right, write a 1 in the first tape position and accept.

Predecessor Function

The Turing machine for $pred_1$ works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number (as for *succ*).
- If the (entire) input is 0 or 1, write a 0 and accept.
- Move the head onto the last symbol of the input.
- While you read symbol 0 replace it with 1 and move left.
- \bigcirc Replace the 1 with a 0.
- If you are on the first tape cell, eliminate the trailing 0 (moving all other non-blank symbols one position to the left).
- Ø Move the head to the first position and accept.

What do you have to change to get a TM for $pred_2$?

Gabriele Röger (University of Basel)

More Turing-Computable Numerical Functions

Example
The following numerical functions are Turing-computable:
•
$$add : \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$$
 with $add(n_1, n_2) := n_1 + n_2$
• $sub : \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $sub(n_1, n_2) := max\{n_1 - n_2, 0\}$
• $mul : \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $mul(n_1, n_2) := n_1 \cdot n_2$
• $div : \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $div(n_1, n_2) := \begin{cases} \left\lceil \frac{n_1}{n_2} \right\rceil & \text{if } n_2 \neq 0 \\ undefined & \text{if } n_2 = 0 \end{cases}$
 $\sim \Rightarrow$ sketch?

Gabriele Röger (University of Basel)

Theory of Computer Science

C3.2 Decidability vs. Computability

Gabriele Röger (University of Basel)

Theory of Computer Science

April 17, 2023 21 / 25

Decidability as Computability

Theorem A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable. Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape. If *M* rejects, *M*' writes a 0 on the tape. Afterwards *M*' accepts. " \Leftarrow " Let *C* be a DTM that computes χ_L . Construct a DTM *C*' that simulates *C* on the input. If the output of *C* is 1 then *C*' accepts, otherwise it rejects.

Turing-recognizable Languages and Computability

Theorem A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \to_p \{0, 1\}$ is computable. Here, for all $w \in \Sigma^*$: $\chi'_L(w) = \begin{cases} 1 & \text{if } w \in L \\ undefined & \text{if } w \notin L \end{cases}$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape and accepts. Otherwise it enters an infinite loop. " \Leftarrow " Let *C* be a DTM that computes χ'_L . Construct a DTM *C*' that simulates *C* on the input. If *C* accepts with output 1 then *C*' accepts, otherwise it enters an infinite loop.

C3.3 Summary

Summary

- Turing-computable function f : Σ* →_p Σ*: there is a DTM that transforms every input w ∈ Σ* into the output f(w) (undefined if DTM does not stop or stops in invalid configuration)
- ► Turing-computable function f : N^k₀ →_p N₀: ditto; numbers encoded in binary and separated by #